Universal Interaction with Networked Home Appliances
Using Stateless Thin-Client Architecture

Tatsuo Nakajima and Atsushi Hasegawa
tatsuo@dcl.info.waseda.ac.jp
Department of Information and Computer Science
Waseda University
3-4-1 Okubo Shinjuku Tokyo 169-8555 JAPAN

Abstract

In ubiquitous computing environments, a variety of ob-
jects include computers to be intelligently behaved, and
home computing is a typical instance of ubiquitous com-
puting. Since networked home appliances contain pow-
erful operating systems and middleware components, our
daily lives will be changed dramatically due to the inte-
gration of these appliances. Also, the interaction between
us and the appliances should change a way to utilize their
advanced features dramatically.

A lot of research projects are working on new user
interaction devices such as wearable user interface and
PDAs as remote controllers. However, these systems re-
quire to build a completely new user interface systems.
On the other hand, standard middleware components
for networked home appliances assume to use traditional
graphical user interface systems such as Java AWT or
Swing. Therefore, it is necessary to combine traditional
user interface systems with advanced user interaction de-
vices.

In this paper, we propose universal interaction for net-
worked home appliances, which is a simple mechanism
to fill the gap between traditional user interface systems
and advanced user interaction devices. The system al-
lows us to select suitable input and output devices ac-
cording to our preferences and situations. Our system
has extended the VNC(Virtual Network Computing) sys-
tem developed by AT&T Labolatories, Cambridge, which
adopts the stateless thin-client architecture, and trans-
lates input and output interaction events according to
user interaction devices. We also show the effectiveness
of our approach in our home computing systems.

1 Introduction

Our daily lives will be dramatically changed due
to a variety of objects embedding computers. These
objects behave intelligently to extend our bodies and
memories[11]. A lot of research projects are working
on attacking various problems to realize these comput-
ing environments. These computing environments are
widely called ubiquitous computing[2, 34]. Also, other
researchers have proposed similar concepts called perva-
stve computing[b], sentient computing[12], or things that
think[11]. In ubiquitous computing environments, a vari-

ety of objects are augmented by containing computers.
Since any programs can be executed on the computers,
there are infinite possibilities to extend these objects by
replacing the programs. Also, these objects have net-
works to communicate with other objects, thus respective
objects will behave more actively by replacing programs
at each other according to surrounding situations. For
example, our environments may memorize what is going
on in the world instead of us, or each object tells us where
it currently exists.

There are a lot of researches for realizing ubiquitous
computing environments. Some research groups have
been working on building prototypes of ubiquitous com-
puting environments[7, 21, 33]. These projects show
the impact of ubiquitous computing to our lives. Also,
recently, several standard middleware specifications are
proposed for realizing ubiquitous computing. Jini[14] and
UPnP[30] provide mechanisms to discover a variety of ser-
vices in distributed environments. Also, HAVi(Home Au-
dio/Video Interoperability)[8, 28] enables us to develop
networked home appliances. Therefore, ubiquitous com-
puting in home environments will be realized in near fu-
ture, and the ubiquitous computing environment is called
home computing. This is a very interested field since
home computing is directly related to our daily lives.
Also, it 1s a good candidate to show the effectiveness of
ubiquitous computing because every person expects rad-
ical advances in home computing environments.

In these environments, one of the most important
problems is how to interact with a variety of objects em-
bedding computers. The interaction between us and com-
puters embedded in various objects has been developed
by several research groups[4, 13, 17, 27]. These devices
enable us to interact with embedded computer more nat-
urally. However, current standard middleware compo-
nents for networked home appliances have adopted tradi-
tional standard graphical user interface systems such as
Java AWT or GTK+. Therefore, it is not easy to con-
trol home appliances from advanced interaction devices
such as PDAs, cellular phones, or a variety of research
prototypes described above. Also, natural interaction is
changed according to a user’s current situation. For ex-
ample, if a user is cooking a dish. S/he likes to control
appliances via voices, but if s/he is watching TV on a
sofa, a remote controller may be better. This means that
the most appropriate interaction device should be dynam-

ically chosen according to a user’s current situation and
preference, and the selection of interaction devices should
be consistent whether s/he is living in any spaces such as
at home, in offices, or in outdoor.

In this paper, we propose universal interaction for net-
worked home appliances, which is a user interface sys-
tem to fill the gap. Our system enables an application
to use traditional standard graphical user interface sys-
tems such as Java AWT or GTK+, but a user can nav-
igate the interface through a variety of devices such as
PDAs, cellular phones, or advanced technologies. We
show that it is possible to realize the goal very easily
using the VNC(Virtual Network Computing) system[25],
which is a stateless thin client system. We have built a
prototype system, and show that a user can use a vari-
ety of interaction devices carried by him. The prototype
system is currently integrated with our home computing
system that have implemented HAVi(Home Audio/Video
Interoperability)[8, 28], which is a standard distributed
middleware specification for home appliances, and shows
that our system 1is useful to control home appliances.

The reminder of this paper is structured as follows.
In Section 2, we describe desirable user interface sys-
tems for home appliances. Section 3 presents the design
and the implementation of our user interface system for
home appliances. In Section 4, we show how our system
works in our home computing system. Also, we describe
a brief overview of our home computing system. Section
5 presents several experiences with building our system,
and we describe related work in Section 6. Finally, in Sec-
tion 7, we present future work and conclude the paper.

2 Interaction with Networked Home Ap-
pliances

Distributed middleware components such as HAVi en-
able us to control multiple networked home appliances in
an integrated fashion. For example, HAVi defines API
for controlling respective audio and video home appli-
ances. A portable application is able to be created by
using the standard API without taking into account the
differences among vendors. However, the system gives us
a traditional way to interact us with home appliances as
shown in Figure 1. As shown in the figure, each home
appliance has a different remote controller device to con-
trol itself. The approach is not good to support future
home appliances since we may have a lot of appliances in
our houses, and it will confuse us to use the remote con-
trollers. For example, to control an appliance, we usually
need a special remote controller, then we need to control
several appliances independently, and we need to learn
how to use appliances even if the same type of appliances
is used. Also, when a user controls an appliance, a system
does not understand the situation of a user. Therefore, a
user needs to take into account which appliance he likes
to control, where the appliance is currently located, and
the differences among appliances such as vendors.

We believe that the following three issues are impor-
tant to realize better interaction with future networked
home appliances.

infrared

l4 Remote Controllers
infrared /

.

Stereo

vV

infrared

Pl

VCR

Figure 1: User Interaction with Home Appliances

e The appliances can be controlled with a variety of
interaction devices such as PDA and cellular phone.
Also, input events and output events may be pro-
cessed in separated devices.

e It is possible to control multiple devices as one ap-
pliance.

e The user interface should be customized according
to each user’s preferences.

The most desirable interaction device to control home
appliances should be changed according to a user’s prefer-
ence, currently available interaction devices from him, or
his current situation as shown in Figure 2. For example,
when both hands of a user are used for something, he can-
not control appliances by traditional remote controllers,
PDAs, or cellular phones. In this case, it is desirable that
these appliances should be controlled by voice. Also, it
is desirable to switch input and output devices accord-
ing to a user’s situation. While he sits on a sofa in a
living room, he likes to use a universal remote controller
to control TV, but while he is cooking, he likes to con-
trol TV via his voice. The situation is suddenly changed
according to a variety of reasons such as a change of his
feeling. This means that flexible interaction should be re-
alized to control home appliances, for example, 1t is better
to switch interaction devices dynamically according to a
user’s situation.

Also, the user interface system for networked home ap-
pliance should provide a mechanism to select input and
output devices independently, and change them dynami-
cally even if these devices are connected to different appli-
ances. For example, a display device where user interface
appears is dynamically changed according to the location
of a user. If a large display device is not available in the
current room, it is better to show the user interface on
the screen of a user’s PDA.

As the number of home appliances is increased, the
control of these appliances will be difficult due to the
complexities. In future, we will have a lot of home ap-
pliances in our houses. Therefore, a mechanism to vir-
tually reduce the number of home appliances is required.

Case A Case B
Cellular Phone Home PDA Home
- -----¥ Appliance . ——====¥ Appliance
Case C Case D
Microphone Home Personal Computer Home
-~~~ Appliance —====¥ Appliance

Figure 2: Controlling Appliances with a Variety of Inter-
action Devices

Home
Appliancel

Home
Appliancel

Control Device

Home
Appliancel

Figure 3: Composition of Appliances

One of the promising approaches is to compose multiple
appliances into one appliance as shown in Figure 3. It
makes possible to deal with these multiple appliances as
one appliance. Currently, distributed middleware com-
ponents like HAVi allow us to use respective functions
such as tuner, amplifier, display and speaker in different
appliances separately. Therefore, it is possible to com-
pose these multiple functions to build a new appliance
since a small function makes it easy to compose multiple
functions.

Future home appliances will provide rich functional-
ities. However, if the number of functionalities is in-
creased, this makes it difficult to use these home appli-
ances by most of usual users. To support rich function-
alities is important since each user’s preference requires
to use various optional functions. Therefore, it is impor-
tant to customize user interface according to the user’s
preference[3]. Also, it is desirable to use context informa-
tion of a user to customize user interface[6]. For example,
the location information is useful to select a suitable ap-
pliance for the user as shown in Figure 4, and the infor-
mation acquired by monitoring usual behavior of a user
is useful to customize the user interface.

EPG customized

for my family Control
Device
Living Room . Control
Device
TV2

EPG customized
for me

Figure 4: Context Awareness

3 Design and Implementation

In this section, we first describe several design choices
for supporting the interaction with users in home comput-
ing environments. Then, we present the implementation
of the current prototype in detail.

3.1 Design Issues

There are several ways to realize the goals described
in the previous section. The most important issue is how
to support a variety of interaction devices. Traditional
user interface systems assume a few types of interaction
devices. For example, mouses, track points, and touch
screens are used as input devices. In this section, we
describe three alternative approaches to build a flexible
user interface system as shown below, and present why
our approach is chosen.

e Builds a new user interface system from scratch.

e Builds a new device independent layer that invokes
respective traditional user interface systems for a va-
riety of interaction devices.

e Captures input and output events of traditional user
interface systems, and transforms the events accord-
ing to interaction devices.

In the first approach, a new user interface system that
can be used with a variety of interaction devices from
scratch. The approach is able to survive when a new in-
teraction device appears because the system takes into
account to accommodate new interaction devices. How-
ever, we need to modify existing applications and middle-
ware components for incorporating the new user interface
system, and the development needs to take a long time.
Many home computing systems already have adopted ex-
isting solutions, then it may be impossible to replace the
currently used user interface systems.

In the second approach, there are two alternative to
support a variety of interaction devices by adding a new
layer on traditional user interface systems. In the first al-
ternative, an interaction device independent layer trans-
lates the standard requests of applications to the requests

for respective user interface systems. For example, in
document based approaches[9, 21, 31], each application
specifies a document containing how to interact between
a user and an appliance. The device independent layer
renders the document for respective existing user inter-
face systems. In multiple user interface approaches, which
is the second alternative, each appliance provides the ge-
tUI() method. The method returns a reference to a mul-
tiple user interface support service, and the service offers
the most suitable user interface for respective interaction
devices. The both approaches are very promising, but
they require to modify existing applications like the first
approach, and the device independent layers should be
implemented for respective interaction devices. There-
fore, the approach is not suitable for supporting existing
standard specifications for home computing.

In the last approach, the bitmap images that are gen-
erated by the user interface system is converted according
to the characteristics of interaction devices to control ap-
pliances. Also, input events from interaction devices are
converted to mouse or keyboard events. The approach 1is
limited not to be able to use the layout information in
graphical user interface to convert the input and output
events. However, most of audio and visual home appli-
ances provide a display device to show a graphical user
interface. In this case, the most important requirement
is that we like to change a display device to show the
graphical user interface and a input device to navigate the
graphical user interface according to a user’s situation or
preference. The requirement can be achieved very well in
this approach. On the other hand, the approach does not
require to modify existing software for home computing.
Also, most of popular user interface systems such as Java
AWT/Swing, the X window system, Microsoft Windows,
which have been adopted in traditional home computing
standard middleware, can be adopted very easily in this
approach.

In this paper, we have chosen the third approach since
our home computing system implementing HAVi requires
to use Java AWT, and we like to use various home com-
puting applications developed on HAVi in near future
without modifying them. We have adopted the VNC
system that has been developed by AT&T Labolatories,
Cambridge[25]. VNC already supports a variety of popu-
lar user interface systems such as the X window system,
Microsoft Windows, and Macintosh. Especially, recent
interests in the use of embedded Linux to build home
appliances make our approach more practical[19] since
Linux usually adopts the X window system as its ba-
sic user interface system, and our system enables a vari-
ety of applications on embedded Linux to be controlled
by various interaction devices. The approach makes the
development of a variety of embedded applications very
easy since the applications can use traditional and famil-
iar user interface toolkits.

3.2 Universal Interaction

In our approach, we call the protocol that can be uni-
versally used for communication between input/output
interaction devices and appliances universal interaction.
The output events produced by appliances are converted

to universal output interaction events, and the events are
translated that are appropriate for respective output in-
teraction devices. Also, input events generated in input
interaction devices are converted to universal input in-
teraction events, and the events are processed by appli-
cations executed in the appliances.

A unwersal interaction prozy that is called the VNC
proxy in the next section plays a role to convert between
the universal interation protocol and input/output events
of respective interaction devices in a generic way. The
proxy allows us to use any input/output interaction de-
vices to control appliances if the events of the devices
are converted to the universal interaction protocol. This
approarch offers the following three very attractive char-
acteristics.

The first characteristic is that input interaction de-
vices and output interaction devices are choosen inde-
pendently according to a user’s situation and preference.
For example, a user can select his/her PDA for his/her
input/output interaction. Also, the user may choose
his/her cellular phone as his/her input interaction de-
vice and a television display as his/her output interac-
tion device. For example, a user can control an appliance
by his/her gesture by navigating augumented real world
generated by wearable devices.

The second characteristic is that our approach enables
us to choose suitable input/output interaction devices
acoording to a user’s preference. Also, these interaction
devices are dynamically changed according to the user’s
current situation. For example, a user who controls an
appliance by his/her cellular phone as an input interac-
tion device will change the interaction device to a voice
input system because his both hands are busy for other
work currently.

The third charatceristic is that any applications exe-
cuted in appliances can use the any user interface systems
if the user interface systems speak the universal interac-
tion protocol. In our approach, we currently adopt key-
board/mouse events as universal input events and bitmap
images as universal output events. They enable us to use
traditional graphical user interface toolkits such as Java
AWT, GTK+, and Qt for interfacing with any interac-
tion devices. For example, a lot of standards for com-
sumer electronics like to recently adopt Java AWT for
their GUI standards. Thus, our approach will allow us to
control various future comsumer electronics from various
interaction devices without modifying their application
programs. The characteristic is very desirable because it
is very diffiucult to change existing GUI standards.

3.3 System Architecture

Our system uses the VNC system to transfer bitmap
images to draw graphical user interface, and to process
mouse/keyboard events for inputs as described in Sec-
tion 3.1. The VNC system originally consists of a VNC
viewer and a VNC server. The VNC server is executed
on a machine where an application is running. The ap-
plication implements graphical user interface by using a
traditional user interface system such as the X window
system. The bitmap images generated by the user in-
terface system are transmitted to a VNC viewer that are

usually executed on another machine. On the other hand,
mouse and keyboard events captured by the VNC viewer
are forwarded to the VNC server. The protocol between
the VNC viewer and the VNC server are specified as the
RFB(Remote Frame Buffer) protocol. The system is usu-
ally used to move a user’s desktop according to the loca-
tion of a user[7], or shows multiple desktops on the same
display, for instance, both MS-Windows and the X Win-
dow system.

In our system, we replace the VNC viewer with a VNC
proxy that forwards bitmap images received from a VNC
server to an output device. Also, it forwards input events
received from an input interaction device to the VNC
server.

Our system consists of the following four components
as shown in Figure 5. In the following paragraphs, we
explain these components in detail.

e Home Appliance Application
e VNC Server
e VNC Proxy

e Input/Output Devices

Home appliance applications generate graphical user
interface for currently available home appliances to con-
trol them. For example, if TV is currently available, the
application generates user interface for the TV. On the
other hand, the application generates the composed GUI
for TV and VCR if both TV and VCR are currently
available. In our system, applications can adopt stan-
dard GUI libraries such as Java AWT/Swing, GTK+, or
Win32 API running on a variety of popular window sys-
tems to write user interface components.

The VNC server transmits bitmap images generated
by a window system using the RFB protocol to a VNC
proxy. Also, it forwards mouse and keyboard events re-
ceived from a VNC proxy to the window system. In our
current implementation, we need not to modify existing
VNC servers, and any applications running on window
systems supporting a VNC server can be controlled in
our system without modifying them.

The VNC proxy is the most important component in
our system. The VNC proxy converts bitmap images re-
ceived from a VNC server according to the characteristics
of output devices. Also, the VNC proxy converts events
received from input devices to mouse or keyboard events
that are compliant to the RFB protocol. The VNC proxy
chooses a currently appropriate input and output interac-
tion devices for controlling appliances. Then, the selected
input device transmits an input plug-in module, and the
selected output device transmits an output plug-in mod-
ule to the VNC proxy. The input plug-in module contains
a code to translate events received from the input device
to mouse or keyboard events. The output plug-in module
contains a code to convert bitmap images received from a
VNC server to images that can be displayed on the screen
of the target output device.

The last component is input and output interaction
devices. An input device supports the interaction with

a user. The role of an input device is to delivers com-
mands issued by a user to control home appliances. An
output device has a display device to show graphical user
interface to control appliances.

In our approach, the VNC proxy plays a role to deal
with the heterogeneity of interaction devices. Also, it can
switch interaction devices according to a user’s situation
or preference. This makes it possible to personalize the
interaction between a user and appliances.

3.4 Implementation of VNC Proxy

The current version of VNC proxy is written in Java,
and the implementation contains four modules as shown
in Figure 5. The first module is the RFB protocol mod-
ule that executes the RFB protocol to communicate with
a VNC server. The module uses the same module im-
plemented in a VNC viewer, then we do not explain the
module in this paper. The second module is the plug-
in management module that receives input and output
plug-in modules from interaction devices, and dynami-
cally links the modules in the VNC proxy. The third
module is the plug-and-play management module that
detects currently available input and output interaction
devices. The last module is the plug-in migration man-
agement module that manages the migration of input and
output plug-in modules between interaction devices and
a VNC proxy.

3.4.1 Management for Available Interaction De-
vices

The plug and play management module detects the cur-
rently available input and output devices near a VNC
proxy. In our system, a unique ID is assigned for each
type of input/output devices. The VNC proxy broadcasts
beacon messages periodically. In the current prototype,
interaction devices are connected via IEEE802.11, Ether-
net or infrared networks. When each interaction device
receives a beacon message, it replies an acknowledgement
message. The acknowledgement message contains the
unique ID to identify the device type. If the VNC proxy
receives several acknowledgment messages from multiple
interaction devices, it chooses one device according to the
preference determined by the VNC proxy. Also, when a
newly detected device replies an acknowledgement mes-
sage, the device may be chosen as a currently used inter-
action device, if the device is more preferable than the
currently used device.

When a VNC proxy chooses a new device after the de-
tection of the device, it sends an acknowledgement mes-
sage before using the device. Then, the VNC proxy sends
a terminate message to the device that is used until now.
Finally, the VNC proxy waits for receiving a plug-in mod-
ule from the new device. The preference to select input
and output devices is registered in a VNC proxy for each
user. If the system cannot detect who likes to use an ap-
pliance, a default preference is chosen. Also, each plug-in
module supports an event to switch the currently used
input and output devices. For example, a user can send a
command to change a currently used output device to a
VNC proxy. The VNC proxy switches the current output

Input Device

Application

. . Plug and Play
Input Plug-In Migration v1ypagement Module

- Plugln Management Module
Output 0"9@% 10
Plug-In >l »®

—Input Events RFB Protocol

RFB rotoco
: N VNC
Output Device v Module Server

Plug-Ins Management
Module

VNC Proxy

Figure 5: System Architecture

device to the next one until the user selects his favorite
output device.

3.4.2 Migration Management of Plug-In Mod-
ules

When receiving an acknowledgement message from the
VNC proxy, the input/output devices send plug-in mod-
ules to the VNC proxy. In our system, we are using the
MobileSpaces mobile agent system[26] to transmit plug-in
modules between input/output devices and a VNC proxy.
After the plug-in modules are downloaded in the Java
virtual machine executed in a VNC proxy, the plug-in
migration module sends a migration complete message to
the input/output devices. MobileSpaces supports hierar-
chical agents, and the agents can be communicated when
they reside at the same hierarchical level. Therefore, we
also implement a VNC proxy as a mobile agent, but the
agent does not be migrated to other hosts. However, the
feature may be used to move a VNC proxy to a near
computer from input and output devices.

Currently, we are using a mobile agent system written
in Java, but we consider that the assumption to use Java
in every device has a limitation since some devices cannot
have Java virtual machines due to several limitations. We
are working on building a very small runtime written in
the C language to send agents to other computers. The
runtime does not execute agents, but can transmit the
agents to other runtimes. We believe that such a small
runtime 1s desirable to support a variety of interaction de-
vices. Also, the approach allows us to universally adopt
Java based mobile agent systems that provide rich func-
tionalities. This means that 1t may be possible to build
a standard mobile agent system that can be used in any

devices that have extremely different requirements.

3.4.3 Life Cycle Management of Plug-In Mod-
ules

Figure 6 shows a plug-in management module. The mod-
ule contains an input and an output plug-in modules. The
input plug-in module receives events from an input de-
vice that is currently selected. The event is converted to
a mouse or a keyboard event, and the event is transferred
by the RFB protocol to a VNC server. For example, if a
user touches a button drawing a right arrow, the event is
transmitted to the input plug-in module delivered from a
PDA device. The event is translated to a mouse move-
ment event to the right, and the event is finally forwarded
to a window system.

Also, after bitmap images are received by the RFB
protocol module in a VNC proxy from a VNC server, an
output plug-in module processes the images before trans-
mitting to an output device. For example, a color image
received from a VNC server is converted to a black and
white image. Also, the size of the image is reduced to
show on a PDA’s screen.

The current version provides two output plug-in mod-
ules and three input plug-in modules. The first output
plug-in module draws bitmap images on a standard VGA
screen, and the second one is for a 3COM’s PalmPilot,
and the respective three input plug-in modules process
events from a keyboard and a mouse, PalmPilot, and a
NTT Docomo’s i-mode cellular phone that has a Web
browser supporting compact HTML[10].

Input Plug-In
Input I"pllrg P g
Device Vengg
t‘ Mouse Events RFB Protocol
Output ¢ I
Device | Transcoded Images
RFB Images

Output Plug-In

Figure 6: Plug-In Modules

3.5 Context-Awareness in Home Comput-
ing Applications

The role of home computing applications is to allow
us to control home appliances easily. The interaction be-
tween a user and home appliances will become more com-
plex since the functionalities of appliances will be richer
and richer. Also, the number of appliances will be in-
creased in future. Therefore, future home applications
should support context aware interaction with a variety
of appliances.

There are two types of context awareness that should
be taken into account. The first one is to personalize the
interaction. The interaction is also customized according
to a user’s situation. The second type is to deal with
currently available multiple appliances as one appliance.

It 1s usually difficult to personalize the interaction with
an appliance since a system does not know who controls
the appliance. In our system, we assume that each user
has his own control device such as a PDA and a cellu-
lar phone. If these devices transmit the identification of
a user, the system knows who likes to control the appli-
ance. However, in our system, there is no direct way to
deliver such information to a home computing applica-
tion from interaction devices since we assume that the
application adopts traditional user interface systems that
do not support the identification of a user. Therefore,
in our current implementation, each user has a different
VNC server that executes personalized applications for
each user. The application provides customized user in-
terface according to each user’s preference. The VNC
proxy chooses an appropriate VNC server according to
the i1dentification of a user acquired from an input de-
vice.

Our system needs to know which appliances are cur-
rently available according to the current situation. In
the current system, we assume that an application knows
which appliances can be available. For example, if the
application supports three home appliances, the applica-
tion needs to provide seven graphical user interfaces with
the combination of the three appliances. The user in-
terfaces are selected according to the currently available
appliances. In our system, we assume that each home ap-
pliance is connected via IEEE 1394 networks. Since IEEE
1394 networks support a mechanism to tell which appli-
ances are currently connected and whose power switches
are turned on, it is easy that the application easily knows
the currently available appliances, and selects the most

suitable user interface.

3.6 Input and Output Interaction Devices

In our system, a variety of input and output devices
are available, and the input devices and output devices
may be separated or combined. For example, a graphical
user interface can be appeared on the screen of a PDA or
a large display device on TV. The user interface appeared
on TV can be navigated by a PDA device. Therefore, a
user can choose a variety of interaction styles according to
his preference. Also, these devices can be changed accord-
ing to the current situation. For example, when the cur-
rently used interaction devices are unavailable, another
interaction device may be selected to control appliances.

We assume that each device transmits a plug-in mod-
ule to a VNC proxy as described in Section 3.3.3. How-
ever, some input devices such as a microphone may not
be programmable, and it is difficult to support the com-
munication to a VNC proxy. In this case, we connect the
device to a personal computer, and the computer com-
municates with a VNC proxy to deliver a plug-in module.
However, it is difficult to know when a program on the
personal computer returns an acknowledgement message
when a beacon message is received from a VNC proxy
since the computer does not understand whether a mi-
crophone is currently available or not. Therefore, in the
current prototype, we assume that the device is always
connected and available.

4 How does Our System Work?

In this section, we describe how our system works.
First, we describe a brief overview of our home comput-
ing system[22], then we present several components in the
system. Finally, we show how our system works in our
home computing system.

4.1 Controlling AV Appliances with PDA

When an application recognizes that currently avail-
able appliances are a television and a video recorder,
it shows a graphical user interface for controlling them.
Since the current user does not interested in the TV pro-
gram reservation, the application draws a user interface
containing power control, TV channel selection, and VCR,
function to its VNC server. As described in Section 3.4,
a VNC proxy selects a VNC server executing an applica-
tion drawing a customized user interface for the user who
likes to control these appliances, and the selected VNC
server transmits bitmap images containing the interface
to the VNC proxy.

Let us assume that the VNC proxy detects that the
user has a PDA device. The PDA device delivers in-
put and output plug-in modules to the VNC proxy. The
VNC proxy transcodes bitmap images transmitted from
the VNC server using the output plug-in module before
transmitting the images to the PDA device. In this case, 8
bits color images whose image size is 640x480 are reduced
to monochrome images whose size is 180x120. Also, in-
put events on the touch screen of the PDA device are
converted to mouse and keyboard events by the input

plug-in module. However, we assume that the user likes
to see the graphical user interface on a bigger display
now. The user transmits a command to the VNC proxy
by tapping on the screen. When the VNC proxy detects
it, the bitmap images containing the graphical user inter-
face are forwarded to the display system, and the images
are converted by the output plug-in module provided by
the bigger display before transmitting them. Also, the
user interface will be appeared again on the screen of the
PDA device by tapping the PDA’s screen.

The scenarios has already implemented in our system.
In the system, we have adopted PalmPilot as a PDA de-
vice, and a VGA display as a display system.

4.2 Controlling CD Player with Cellular
Phone and Voice

In this section, we show a scenario where a user con-
trols a CD player using his cellular phone, but it will be
controlled by voice when the cellular phone is turned off.

A VNC proxy makes the input plug-in module for a
cellular phone activated if it recognizes that a user has a
cellular phone. Also, an output plug-in module is down-
loaded to use a TV display for showing a graphical user
interface. Therefore, bitmap images transmitted from the
VNC server are appeared on the TV display. If a user
pushes a button on the cellular phone, the event is trans-
ferred to the VNC proxy. The VNC proxy converts the
event to a mouse movement event, and sends it to a VNC
server to simulate the movement of a mouse cursor. When
a user pushes another button, the VNC proxy translates
it to a mouse click event. Then, the VNC server forwards
the event to an appropriate application, and the appli-
cation recognizes that a button such as a play button is
pushed.

Now, let us assume that the user turns off the power
switch of his cellular phone. In this case, a voice recog-
nition software on his personal computer is selected as
an input interaction device since the user does not carry
other currently available input devices. Then, the VNC
proxy needs to download the input plug-in module for
voice control from the personal computer. The plug-in
module translates texts converted by the voice recogni-
tion software to mouse and keyboard events to control
the CD player.

4.3 Controlling a TV appliance using a
Wearable Device

In this example, we like to show that our approach en-
ables us to use advanced wearable devices to control var-
ious home appliances. Let us assume that a user wears a
head-mounted display that cannot be distinguished from
prescrlptlon lenses, and he/she wants to control a tele-
vision. In this case, the graphical user interface of the
television is appeared on the glass. The user navigates
the graphical user interface via his/her voice.

The VNC proxy converts the image size that is suitable
for displaying on the glass If a user takes off the glass, the
graphical user interface is automatlcally displayed on the
display of the television. The voice is used to move a cusor
on the graphical user interface. The voice is translated

to keyboad/mouse events in the VNC proxy and these
events are delivered to an application on a machine that
runs with the VNC server.

5 Current Status and Experiences

In this section, we first describe the current status of
our prototype system, then we discuss several experiences
with building our prototype system to control networked
home appliances.

5.1 Current Status

The current prototype in our home computing system
emulates two home appliances. The first one is a DV
viewer and the second one is a digital TV emulator. Our
application shows a graphical user interface according to
currently available appliances as described in the previ-
ous section. Also, the cursor on a screen that displays
a graphical user interface can be moved from a PalmPi-
lot. However, if the device 1s turned off, the cursor is
controlled by the keyboard and the mouse of a personal
computer. It is also possible to show a graphical user
interface on the PDA device according to a user’s prefer-
ence. Currently, we are working on to integrate cellular
phones in our system. NTT Docomo’s i-mode phones
have Web browsers, and this makes it possible to move a
cursor by clicking special links displayed on the cellular
phones.

Figure 7 contains several photos to demonstrate our
system. In the demonstration, if both a DV camera and a
digital TV tuner are simultaneously available, the control
panels for them are combined as one panel. As shown in
the photos, the control panels can be controlled by both
a Palmpilot and a mobile PC.

In our home computing system, we have adopted
Linux/RT[29] that extends a standard Linux by adding
a resource reservation capability. The Linux also pro-
vides an IEEE 1394 device driver and an MPEG2 de-
coder. Also, IBM JDK1.1.8 for the Java virtual machine
is used to execute the HAVi middleware component.

5.2 Experiences

In this section, we show three experiences with build-
ing the current prototype of a user interface system for
networked audio and visual home appliances.

5.2.1 Limitation of Our System

In our system, a bitmap image that contains a graphi-
cal user interface is transferred from a VNC server to a
VNC proxy. Since the image does not contain seman-
tic information about its content, the VNC proxy does
not understand the content. For example, it is difficult
to extract the layout of each GUI component from the
image. Therefore, it is not easy to change the layout ac-
cording to the characteristics of output devices or a user’s
preference. Also, our system can deal with only mouse
and keyboard events. Thus, the navigation of a graphical
user interface can be done by emulating the movement of
a cursor or pressing a keyboard and mouse buttons. If the

Figure 7: Current Status of Our System

limitation makes the usability of a system bad, other ap-
proaches should be chosen. However, navigating a graph-
ical user interface from a PDA and a cellular phone pro-
vides very flexible interaction with home appliances. Our
experiences show that home appliances usually allow us
to use a large display and show graphical user interfaces
on the display to control the appliances. Thus, we be-
lieve that our system has enough power to make future
middleware components for home appliances flexible.

5.2.2 Better Control for Home Appliances

Our system can control any applications executed on
standard window systems such as the X window system.
In our home computing system, traditional applications
coexist with home computing applications, and these ap-
plications can also be controlled in an integrated way by
our system. For example, we can navigate an MP3 player
or a Netscape browser running with home computing ap-
plications via our system. However, the overlapping win-
dow layout is painful to be navigated by our user inter-
face system. We consider that the tiled window strategy
is more suitable for controlling home appliances. Also,

our experience shows that we can control both home ap-
pliances and traditional applications such as presentation
software and web browsers by using our system in a com-
fortable way if our system supports the movement of a
mouse cursor at a variety of speeds.

5.2.3 Importance of Context Awareness
Currently, applications in our home computing system
provide very simple functionalities to customize user in-
terface according to context information. Our system
monitors which appliances are available using the IEEE
1394’s plug and play capability. We also assume that
our system needs to know all combinations of available
appliances, and design user interface for respective com-
binations. Then, an appropriate user interface is selected
according to the current configuration.

The prototype application is useful to demonstrate the
effectiveness of our system. Especially, the composition of
functions in respective appliances and the customization
of a user interface according to a user’s preference are use-
ful for controlling networked home appliances. However,
our current design methodology to build context-aware

applications is very ad-hoc, then it is necessary to inves-
tigate to build context-aware applications in a systematic
way[23], and we need a variety of sensors to monitor a
lot of context information such as location information[7]
and a user’s emotion[24]. Also, we need to investigate a
technique to compose multiple functions in appliances in
an automatic way even if a new appliance is appeared on
an IEEE 1394 network.

For solving the problems, we are working on two issues.
The first issue is to build context-aware applications in a
systematic way. In our approach, we first create a base
program that does not take into account contexts. Then,
we add a new concern that deals with a context in an
incremental fashion. In the program, a context is consid-
ered as a concern, and each concern 1s clearly separated
from a base program. We believe that aspect-oriented
programming[18 may help to solve the issue. The sec-
ond issue is to specify contexts rigorously. In traditional
system, the representation of contexts is treated in ad-hoc
way. However, to build portable context-aware applica-
tions, the representation of contexts should be standard-
ized.

6 Related Work

There are several approaches that are very close to our
research efforts. In this section, we describe five systems,
and compare the systems with our system.

The first system is the Pebble system[20]. The Pebble
system enables us to control desktop applications on the
MS-Windows operating system through PalmPilot which
is the most popular PDA in the world. For example, a
cursor on the desktop can be moved by touching a screen
of the PalmPilot. The system is very close to our current
prototype. However, the focus is different since Pebble fo-
cuses on the usability of a system. On the other hand, our
system focuses on the system architecture. Our system
enables us to use a variety of input devices to navigate
a graphical user interface on an output display. Also, in
our system, input and output interaction devices can be
switched according to a user’s preference. We think that
the flexibility of our system is more suitable to support
networked home appliances.

The second system is the UIML(User Interface Markup
Language) system[31], which is an XML language that
permits a declarative description of a user interface in a
highly device-independent way. If an application writes
a user interface as a UIML document, the document 1s
rendered according to respective input/output interac-
tion devices. For example, a UIML document is rendered
on PalmPilot to use it as a input/output devices. Also,
a UIML document can be rendered for VoiceXML[32]
to support voice interaction. However, it is difficult to
adopt the approach when an input and an output devices
are separated. Also, there is no support to dynamically
switch these input/output devices according to a user’s
situations. Since the approach is promising in future to
support heterogeneous devices running on a variety of
user interface systems, there are similar document based
approaches described in [21, 9].

The CUES system[16] provides a framework to control
a variety of appliances from a mobile device. In the sys-
tem, each appliance has a Java bytecode that is transmit-
ted to a mobile device. The code contains a graphical user
interface, and it is appeared on the mobile computer. A
user can control the appliance by the graphical user inter-
face on the mobile computer. The approach enables us to
use an appropriate graphical user interface for respective
appliances. However, the approach assumes that the mo-
bile computer has a medium size display to show a graph-
ical user interface implemented by Java AWT/Swing, and
should have a pointing device and a keyboard. Also, the
approach does not support the customization of user in-
terface and dynamic switching of interaction devices.

In [15], they have proposed Simja that is a middleware
component supporting multi-modal interfaces to services.
Simja translates a variety of media formats. Each trans-
lator contains a single function, and it can be connected
to another translator. In Simja, the connection is called
a path, and the path is set up among translators auto-
matically according to the specification representing the
requirements. In our current approach, the structure of
plug-in modules is monolithic, and each interaction de-
vice needs to create an input and an output module in-
dependently, so that Simja’s approach is useful to build
a plug-in module in a composable way.

HAVi provides two ways to support the interaction
with a user. The first way 1s Data Driven Interac-
tion(DDI). This provides a declarative way to describe
graphical user interface. In the approach, user interface
is described as a document like UIML, and the document
is rendered according to the characteristics of a display
device, but UIML is more general than HAVi’s DDI since
UIML is based on XML. The second way is similar to
the CUE system. The Java bytecode containing a user
interface written in Java AWT is downloaded in a HAVi
device, and the graphical user interface is appeared on
the display of the device. The problem of the approach
is also the same as CUES.

7 Conclusion and Future Work

This paper has described a new user interface system
to fill the gap between traditional graphical user interface
systems and advanced input/output interaction devices
for networked home computing. We have also described
the effectiveness of our system by demonstrating our sys-
tem to control our home computing system.

Our system does not analyze the content of bitmap
images containing graphical user interface. Therefore, it
s not easy to use our system unless bitmap images are
translated for output devices, or input events are trans-
lated to mouse or keyboard events, but we believe that
our system is enough to control networked audio and vi-
sual home appliances since these appliances are usually
used with a large display device. Also, our system can
be used to control a variety of applications running on
Windows and Linux like Pebble.

The other problem is how to select a suitable inter-
action device according to a user’s preference. A user

likes to control a variety of appliances in a uniform way
whether he is in offices, houses, stations, or airports. In
the current environments, a user needs to take into ac-
count where he likes to control appliances due to a variety
of physical limitations, but such mode changes caused by
user mobility impose a severe burden on his mind. Thus,
we require more intimate user interaction regardless of
his location or situation, and the interface will connect a
variety of our life spaces in a seamless way.

Another future topic is a user interface system in per-
sonal area networks. This is another typical example of
ubiquitous computing environments. However, our ap-
proach is not appropriate for personal area networks since
there is no large display in these environments. We also
like to investigate simple user interface systems for the
environments in future.

References

[1] 1394 Trade Association, “AV/C Digital Interface Command Set
General Specification, Version 2.0.1”, http://www.1394TA.org/,
1998.

[2] G.D. Abowd, E.D. Mynatt, “Charting Past, Present, and Fu-
ture Research in Ubiquitous Computing”, ACM Transaction on
Computer-Human Interaction, 2000.

[3] AK. Dey, D.Salber, M.Futakawa, G.Abowd, “An Architecture
To Support Context-Aware Applications”, GVU Technical Report
GIT-GVU-99-23. June 1999.

[4] W. Ark, D. Christopher Dryer, D.J. Lu, “The Emotion Mouse”, In
Proceeding of the HCI International conference, 1999.

[5] G.Banavar, J.Beck, E.Gluzberg,
J.Munson, J.Sussman, D.Zukowski, “Challenges: An Application
Model for Pervasive Computing”, In Proceedings of the Six Annual
International Conference on Mobile Computing and Networking,
2000.

[6] K.Cheverst, N.Davies, K.Mitchell, A .Friday, “Experiences of Devel-
oping and Deploying a Context-Aware Tourist Guide: The GUIDE
Project” | In Proceedings of the Six Annual International Confer-
ence on Mobile Computing and Networking, 2000.

[7] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, Paul Web-
ster, “The Anatomy of a Context-Aware Application”, In Proceed-
ings of the 5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking, 1999.

[8] HAVI Consortium,
"HAVi Specification: Specification of the Home Audio/Video In-
teroperability (HAVi) Architecture, http://www.havi.org/

[9] T. Hodes, and R. H. Katz, “A Document-based Framework for In-
ternet Application Control”, In Proceedings of the Second USENIX
Symposium on Internet Technologies and Systems, 1999.

[10] T.Kamada, “Compact HTML for Small Information Appli-
ances”, W3C Submission, http://www.w3c.org/TR/1998/NOTE-
compactHTML-19980209.

N. Gershenfeld, “When Things Start to Think”, Owl Books, 2000.

Andy Hopper, “Sentient Computing”, The Royal Society Clifford
Paterson Lecture, 1999.

H. Ishii, B.Ullmer, “Tangible Bits: Towards Seamless Interfaces
between People, Bits and Atoms”, In Proceedings of Conference on
Human Factors in Computing Systems,1997.

Jini Technology, http://www jini.org/
A .Joseph, B.Hohlt, R.Katz, and E.Kiciman, ”System Support for

Multi-Modal Information Access and Device Control”, WMCSA
199, 1999.

,—.
=
2

Kangas, K., and Roning, J., “Using Code Mobility to Create Ubiqg-
uitous and Active Augmented Reality in Mobile Computing”, In
Proceedings of the 5th ACM/IEEE International Conference on
Mobile Computing and Networking, 1999.

[17] N.Khotake, J.Rekimoto and Y.Anzai, ”InfoStick: an interaction
device for Inter-Appliance Computing”, Workshop on Handheld
and Ubiquitous Computing (HUC’99), 1999.

[18] G. Kiczales, et. al., “Aspect Oriented Programming”, Xerox PARC
Technical Report, SPL-97-008, 1997.

[19] R. Lehrbaum, “The Embedded Linux Market”,
http://www.linuxdevices.com/
[20] Brad A. Mayer, Herb Stiel, and Robert Gargiulo, “Collabora-

tion Using Multiple PDAs Connected to a PC”, In Proceedings
CSCW’98: ACM Conference on Computer-Supported Cooperative
Work, 1998.

[21] M. Munson, T. Hodes, T. Fischer, K. H. Lee, T. Lehman, B. Zhao,
“Flexible Internetworking of Devices and Controls” |, In Proceedings
of TECON, 1999.

[22] T. Nakajima, “System Support for Networked Audio and Visual
Home Appliances on Commodity Operating Systems”, Submitted
for Publication.

[23] T. Nakajima, A Framework for Building Environment-Aware Soft-
ware, The second IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 1999.

[24] R. Picard, “Affective Computing”, The MIT Press, 1997.

[25] T.Richardson, et al., “Virtual Network Computing”, IEEE Inter-
net Computing, Vol.2, No.1, 1998.

[26] 1. Sato, ”MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications using a Hierarchical Mobile Agent System”
In Proceedings of IEEE International Conference on Distributed
Computing Systems, 2000.

[27] 1.Siio, T.Masui, K.Fukuchi, “Real-world Interaction using the
FieldMouse”, In Proceedings of the ACM Symposium on User In-
terface Software and Technology (UIST’99), 1999.

[28] R.Lea, S.Gibbs, A.Dara-Abrams, E. Eytchson, “Networking Home
Entertainment Devices with HAVi” | IEEE Computer, Vol.33, No.9,
2000.

[29] Timesys, " Linux/RT” | http://www.timesys.com.

[30] Universal Plug and Play Forum, http://www.upnp.org/

[31] User Interface Markup Language, http://www.uiml.org/

[32] VoiceXML Forum, “VoiceXML Forum Version 1.0 Specification”,
http://voicexml.org/.

[33] R.Want, B.Schilit, N.Adams, R.Gold, K.Petersen, J.Ellis,
D.Goldberg, M.Weiser, “The ParcTab Uniquitous Computing Ex-
periment” | Technical Report CSL-95-1, Xerox Palo Alto Research
Center, 1995.

[34] Mark Weiser, “The Computer for the 21st Century”, Scientific
American, Vol. 265, No.3, 1991.

