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Abstract

Sentient Spaces are perceptive physical spaces that aid
user activities with computer provided services. Context
information, captured through networks of sensors, is
communicated to computing devices, embedded in the
environment, that interpret the eurrent situation observed
and, as a conseguence, trigger adequate services for the
user. Unfortunately, the sensor technologies used in
context capture (in special user location) are usually too
expensive and complex to deploy, configure and maintain.
This has prevented a wider adoption of the so-called
Sentient Computing paradigm in our living or working
spaces. We present, TRIP, a novel vision-based sensor that
uses the combination of off-the-shelf hardware (video
cameras and PCs) and printable circular markers for
entity identification and location. This more convenient
sensing device is accompanied by a set of programming
abstractions and middleware services, named SIF, that
make the development of sentient systems and their later
deployment a |ess cumbersome and easier process.

1. Introduction

Ubiquitous Computing [27] envisions physical spaces,
such as offices or homes, augmented with computing
devices, seamlesdy integrated into the environment, that
aid humans in their everyday activities. It corresponds to
the next generation of computing in which the user's
attention will not be drawn by computers but vice versa,
i.e. computers will be attentive to user interactions and aid
their daily tasks.

Sentient Computing [8] is our approach to make the
Ubiquitous Computing dream a reality. It aims to create
perceptive living spaces where users activities are
enhanced by software services provided by embedded
devices in the environment. These environments achieve

awareness of their surroundings through sensors that
capture contextual information such as the location and
identity of objects or the sound level and temperature of a
physical space. Sentient Computing combines the dynamic
information conveyed by sensors with static information
from data repositories (e.g. entity attributes, the geometric
features of a physical location or the capabilities of
devices), in order to build an up-to-date picture of the
current state of the world. Assisted by such model, sentient
systems aim to perform the right service at the right time
on behalf of users. In essence, computing systems and, by
extension, the spaces where these systems are installed are
given awareness so that they can become reactive to the
people and activities taking place around them.

To be able to track the location of people and computers
has been shown to be a very useful capability for the
development of context-aware applications. In fact, most
of the currently existing sentient applications exploit the
location attribute of context [10]. This explains why in the
indoors domain several positioning systems have appeared
providing different entity location granularity, i.e. ranging
from room-scale resolution such as the infrared-based
Active Badge [25], to more accurate 3D coordinate
resolution offered by systems such as the ultrasonic-based
Active Bat [26]. All these systems require people and
objects that wish to be located to be given an el ectronic tag
that transmits a unique identifier via either an infrared,
ultrasound or radio interface to a network of sensors on the
walls or ceilings of a building. A Location Server then
polls and analyses the information from the sensors and
makes it available to applications.

Despite their proven usability, existing indoor location
systems have some important drawbacks. The tags they
use are proprietary and need battery power to operate. The
infrastructure required, i.e. a network of sensors, is
complex and expensive to install and maintain. These
factors have limited the deployment of such positioning
systems to research |aboratories. This work presents an
alternative vision-based sensor technology known as TRIP



that offers a better trade-off between the price and
flexibility and the accuracy of the location data provided.
Software development for sentient systems is usually a
rather involved task, since it encompasses the cooperation
of several distributed elements, such as a network of
sensors, a database, a Location Server and the effectors
undertaking the actions triggered as result of sensor input
interpretation. This appreciation has resulted in severa
research efforts being conducted towards facilitating
context-aware applications development, e.g. the stick-e
note architecture [2] and the Context Toolkit framework
[21]. The SIF framework is our approach to tackle this
issue. This framework differs from previous work in that it
focuses not only on providing suitable high-level
abstractions on which sentient application programmers
base their designs, but also pays a special attention to
efficient sensor data dissemination. In addition, SIF is
coupled with some essential middleware services. Of
special interest among these services is LOCALE, a
middleware infrastructure offering sentient applications
control over object’s lifecycle and location in a network.
Sections 2 and 3 explore the TRIP technology and the
distributed systems infrastructure built on top of it. SIF is
overviewed in section 4. Section 5 offers a brief
description of the LocALE middleware service. Section 6
illustrates the usability of the TRIP technology through the
description of two TRIP-enabled applications built with
the assistance of the SIF-defined programming
abstractions and the LocALE middleware. Section 7 offers
a brief summary of some related research. Section 8
sketches some further work and draws some conclusions.

2. TRIP: avision-based |ocation sensor

TRIP (Target Recognition using Image Processing)
[12][13] is a vision-based sensor system that uses a
combination of visual markers (2-D ringcodes), see Figure
1, and video cameras to identify and locate tagged objects
in the field of view. Relatively low CPU demanding image
processing and computer vision algorithms are applied to
video frames to obtain, in near real-time, the identifier
(TRIPcade) and pose (location and orientation) of the
targets with regard to the viewing cameras.

TRIP constitutes a very cheap and versatile sensor
technology. Its 2-D printable ringcodes (TRIPtags)
represent a ternary number in the range 1-3" (1,594,323).
This number is read anti-clockwise from its unique
synchronisation sector, asillustrated in Figure 1. Only off-
the-shelf hardware is required: low-resolution CCD
cameras and the processing power of PCs. TRIP's low-
cost and ample addressing space make it suitable for
tagging even low-cost items, such as books or office
stationary, in contrast to other location sensing
technologies. Users with web-cams attached to their PCs

may install the TRIP software and hence provide visual
awareness to their machines. A public domain release of
the TRIP software is planned to be available soon at our
research group’s site: http://www-lce.eng.cam.ac.uk.
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Figure 1. TRIPcode representing 1,160,407

2.1. TRIP target recognition process

The TRIP software implements a target recognition
algorithm that receives as input raw video frames and
executes a set of image processing stages in order to
determine the identifier and location of the centre of a
TRIPtag in a video frame where TRIPcodes have been
spotted. Below an overview of this process is given. For
more details refer to [13].

Figure 2 depicts the video filtering process undertaken by
the target recognition algorithm. Firstly, the original image
is transformed into a binary image (containing only black
and white intensity values) with increased contrast level,
by means of an adaptive thresholding process. This stage
makes TRIP very robust to variable lighting conditions
and suitable even for low-quality CCTV or web cameras.
Secondly, the pixels where the intensity values undergo a
sharp variation (edges) are identified, by applying the
gradient operator. Next, edges are thinned to 1-pixel width.
Fourthly, the connected chains of edge points are followed
producing for each edge tracked a list of ordered point
locations. Note that as result of the camera's perspective
effect targets circular borders are imaged as ellipses.
Thus, in this stage only edges whose shape is likely to
define an elliptical shape are kept. In fifth place, an ellipse
fitting procedure is applied to each edge encountered,
obtaining the ellipse parameters best approximating the
edge points. Sixthly, the ellipses found are tested for
concentricity in order to identify candidate TRIPcodes.
Then, a code deciphering stage is applied based on the
outcomes of stages 1 and 5. As part of this stage the code
obtained is validated through an even parity error check.
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Figure 2. TRIPcode Recognition Algorithm

Finaly, the identifier and geometric properties of the
outermost elliptical border of each target are returned.

2.2. TRIP target pose extraction

The target pose extraction agorithm determines from a
single view of a TRIPtag the orientation of the target plane
and the position of its centre with regard to the viewing
camera. It takes as input the geometric features of the
eliptica borders of the spotted targets returned by the
target recognition algorithm. For each TRIPcode
identified, it establishes a homography or transformation
that back-projects the elliptical outermost border of a
target, as seen in the image plane, into its actual circular
form, of known radius, in the target plane. The size of a
target may be encoded within the 13 ternary bits reserved
for identifier encoding in a TRIPcode, or otherwise passed
as a parameter to the parsing process.

TRIP makes the assumption that the camera intrinsic
parameters are known. In other words, the user is required
to underteke the well-known camera calibration [24]
process once for each CCD camera. Fortunately, there are
several publicly available software packages for camera
calibration, e.g. [24].

The target pose extraction algorithm returns the
translation vector (t,, ty, t,) and rotation angles (a, B, y)
that define the rigid body transformation between the
camera coordinate system and a target centred coordinate
system. This method exploits the property, unique to a
conic that is a circle, that the back-projected curve's
implicit equation must have equal coefficients X and Y?
and no tem in XY. It is based on the
POSE_FROM_CIRCLE algorithm described in [5].

The projective geometry involved in the algorithm is
shown in Figure 3. The image ellipse of the outermost
circular border of atarget’s bull’s-eye defines a cone with
vertex in the centre of projection of the pinhole camera
(0). The orientation of the circle’s plane, m, is found by
rotating the camera so that the intersection of the cone
with the image plane becomes a circle, which happens
when the image plane is parallel to the target plane. This
rotation is estimated as the composition of two successive
rotations. The first puts the Z-axis through the centre of
the target, and alignsthe X and Y axes with the axes of the
image ellipse; the second rotates the newly found
coordinate system around Y’ until the image plane, m,
becomes parallel to m. The rotation of the target's
outermost circle around the Z-axis orthogona to its plane,
impossible to recover from the view of a circle given its
symmetry, is obtained by using the bottom outermost
corner of a TRIP target’s synchronisation sector (denoted
by a small circle in Figure 1). The projective geometry
involved in this processis fully described in [12].

2.3. TRIP Sensor Operation Modes

TRIP' s image parsing process, despite being optimised to
require the least possible processing load, still has
relatively high processing demands. Nevertheless, a TRIP
sensor will be often analysing frames where no TRIPtags
are encountered, or alternatively, frames where the
approximate location of a TRIPtag in the image could be
inferred based on its location in previous frames.
Therefore, it is convenient to provide the TRIP sensor with
some intelligence both to distinguish the worthiness of
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Figure 3. POSE_FROM_CIRCLE geometry

analysing an image, and if the analysis proceeds, to
determine whether the full-image parsing should take
place or this process should just be applied to a smaller
sub-window in the image. The aim is to give to TRIP
maximum responsiveness but still  guaranteeing the
minimum consumption of processing load. This is the
reason why TRIP presents an adaptive behaviour during
its operation. The sensor transits through 3 different
operating modes, named default, saving and real-time
modes, depending on the characteristics of the scene
viewed. Figure 4 shows a state diagram with TRIP's
operation modes and the conditions upon which the sensor
switches from one behaviour mode to another.

TRIPcode sightings in
last X frames

X frames without
TRIPcode sightings

NO

TRIPcode
sightings
TRIP Processing
DEFAULT-MODE

TRIP Processing
SAVING-MODE

SAVING-MODE
timeout Y expired
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Figure 4. TRIP sensor’s operating modes diagram

The TRIP default-mode of operation is activated on
sensor start-up and every time a timeout set to guarantee
full-image analysis expires. This timeout, specified as a
parameter in the system bootstrap, limits the time the
sensor spends in either the saving or real-time modes,

where a full-image analysis may not have taken place.
This is necessary to enforce a good responsiveness of the
system to scene changes.

The TRIP saving-mode of operation is triggered by the
default-mode whenever there are no TRIPcode sightingsin
a given number of frames specified at the system start-up.
The distinctive feature of this mode is that it introduces a
Triggering Analysis stage before the standard TRIP
parsing procedure to an image is undertaken. This stage
determines whether significant changes in the scene have
occurred that make worthy a full image analysis. Every
given time slot the triggering module analyses a low-
resolution version of a newly captured image (i.e. one
every 3 pixels in both horizontal and vertical directions)
and compares each pixel with a previously calculated
Running Video Average (RVA) frame of the background.
An RVA [22] is a method to construct an evolving
background frame, insensible to small variations in day
illumination, using the average pixel values of the N
preceding images. The triggering stage determines the
percentage P of pixels that have changed by more than a
certain threshold. If that percentage is high a full-image
analysis is triggered, otherwise the TRIP sensor is set to
sleep.

The TRIP real-time-mode of operation is triggered from
any of the other two modes every time TRIPcodes are
spotted within an image. This method exploits the spatial
locality of TRIPtag images in successive video frames.
Once a target has been identified within an image,
subsequent frames are only explored within a small pixel
window containing the area on the previous image where a
target was recognised. Nevertheless, in order to guarantee
the rapidly identification of newly appearing TRIPcodes,
the full image processing is still carried out frequently, by
default unless otherwise specified once every 5 frames.



2.4. TRIP perfor mance and accur acy

The current C++ implementation of the TRIP Target
Recognition algorithm processes 15 640x480 pixels
frames per second on an 800 MHz Pentium II1. When the
target recognition and pose estimation are simultaneously
undertaken, the performance achieved on the same
machine is about 12Hz. Near real-time video processing is
achieved through the adaptive behaviour of the TRIP
sensor’ s operation.

TRIPtags are recognised as long as the slant between the
normal to the target plane and the translation vector is less
than 70° and the target image occupies an area of at least
20x20 pixels. Targets spotted in a frame of 640x480 pixels
resolution are identified as |long as they are within 3 meters
distance. The pose extraction method returns the 3-D
location of the centre of a TRIP target with regard to a
viewing camera with an average error of less than 3%. The
likelihood of finding false positivesis negligible thanks to
the error parity check used in the TRIPcode encoding.

3. TRIP: adistributed |ocation sensor

An event-based distributed architecture has been devised
around TRIPin order to export the sensor data provided by
this technology to interested applications. The
functionality of the TRIP system, i.e. its target recognition
and pose extraction, has been encapsulated within a
CORBA [19] component named TRIParser. This
component offers a UNIX pi pe-like interface that enables
applications to connect distributed Frame Source
components, supplying images from cameras spread
throughout the environment, to TRIParsers. A TRIParser
may pull images from one or more Frame Sources. Every
frame pulled is tagged with a unique camera identifier.
TRIP processing results are, by default, asynchronously
communicated in event-form to a CORBA Notification
Service's Channel [18] associated with each TRIParser.
This interleaved event communication component
decouples analysers' frame processing and result reporting
duties. Thus, TRIP can concentrate on the CPU intensive
image parsing process whereas the Notification Channel
component deals with supplier and consumer registration,
timely and reliable event delivery to registered consumers,
and the handling of errors associated with unresponsive
consumers.

A TRIParser generates TRIPevents, represented in
pseudo-C++ code in Figure 5, that are mapped into the
Structured Event message type supported by the CORBA
Notification Service [18]. Structured Events define a

standard format for messages conveyed to a Notification
Channel. In the body of this message the contents of an
event are mapped into a set of name-value pairs to which
filtering operations can be applied. Parties interested in a
given TRIParser's raw location data subscribe to its
channel passing a set of constraints over those name-value
pairs of an event, expressed in the Extended Trader
Constraint Language [16]. The Notification Channel
performs event filtering and communication on behalf of
its representing TRIParser. Hierarchical interconnections
of TRIP Parsers' Notification Channels can be created in
order to ensure the efficient and scalable dissemination of
TRIP generated sensorial data. For example all the
Notification Channels corresponding to TRIParsers in a
room could be federated, in order to make available the
whereabouts of TRIPtag wearers within aroom.

struct TRIPsighting {
string TR Pcode; // code ternary representation
paransEl | i pse parans; // bull’s-eye’'s outer ellipse
// params (X,y,a,b, 8) in imge
doubl e d2Tar get ;
targetPosition position; // (xpos, ypos, zpos) vector
/1 fromcanera to target origin
targetOrientation orientation; // (o, B, V)

b

struct TRI Pevent {
unsi gned | ong caneral D;
TimeStanmp time; // secs and usecs since 1/1/70
TRI Psi ghti ngLi st si ghti ngLi st;

Figure 5. TRIPevent contents

A TRIParser aso provides a synchronous invocation
interface (par seFr ane) by which the TRIParser pulls a
frame from the source passed as a parameter and returns
the location data inferred from it. Hence, applications can
interact with a TRIParser in either a synchronous or
asynchronous form.

3.1. The TRIP Directory Service

A TRIP Directory Server (TDS) has been created with the

purpose of regulating the TRIPcode granting process and
establishing mappings between real-world objects and
TRIPcodes. This component guarantees the efficient
utilisation of TRIPcodes addressing space and their
classification into categories with a common ternary
prefix, used by consumers in event filter registration. The
TDS offers CORBA interfaces for the creation,
modification, deletion and retrieval of both TRIPcodes and
their categories. On category creation, a data schema
defining the set of name-value type pairs associated to
TRIPcodes belonging to that category is specified.
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Figure 6. TRIP Directory Service’s GUI front-end snapshot

The TDS al so provides a notification mechanism suitable
for applications that only want to query this component
during their bootstrap stage and still be aware of
modifications to their TRIPcode's categories of interest.
TRIPcode creation, modification and deletion events are
conveyed to the TDS's associated channel. Figure 6 shows
a snapshot of the TDS's GUI front-end. This application
enables the user to easily input TRIPcode associated data
and to print out their respective TRIPtags.

4, The Sentient | nfor mation Framewor k

The Sentient Information Framework (SIF) defines an
application construction model to streamline sentient
systems development. SIF isolates context capture and
abstraction from its use by applications and, at the same
time, it provides efficient mechanisms for context
communication. Its main function is to transform context
information into the format demanded by applications,
rather than enforcing them to deal with the low-level
intricacies of sensor access and data interpretation. SIF-
enabled applications simply subscribe for the high-level
contextual event notifications that can directly drive their
operation. For example, a “door access control system”,
conventionally, would have to interact directly with the
underlying identification technology, e.g. TRIP, and
interpret the sentient data provided, to determine when an
authorised user presence is detected. Under SIF, however,
this application would simply register for an “authorised
person presence” event, since SIF undertakes the sentient
data manipulation and interpretation on its behalf.

The architecture of SIF (see Figure 7) consists of a group
of co-operating distributed software components that use
events as a uniform way of informing each other of
context changes. SIF defines three main component
abstractions upon which the design of sentient
applications may be based:

1. Context Channe! (CC) objects interleave in between
other SIF components to decouple their operation from
event filtering and communication duties. Through
them, multiple suppliers can communicate transparently
and asynchronously with multiple consumers without
the components knowing about each other. Physically

implemented as OMG Notification Channels, they are
shared by co-operating components that either generate
or consume events of the same type. Upon event arrival
they undertake event filtering and transmit to
consumers only those events for which they registered
interest.

2. Context Generators (CG) encapsulate a single context
source or a set of related ones and the software that
acquires raw context information from them. Every CG
communicates the sentient data captured to its
associated CCs. CGs may be based in physical sensors
such as TRIP, GPS, or a simple microphone. They can
aso represent a software object, such as the TRIP
Directory Server, that communicates notifications about
changesin its state.

3. Context Abstractors (CA) achieve the separation of
concerns between context sensing and application
semantics. They consume raw sentient data provided by
CGs (e.g. TRIPcode 1234 spotted), interpret its contents
(e.0. user Diego spotted) and augment it (e.g. Diego’'s
login is dipina), producing enhanced contextual events
that directly drive applications. Sometimes they also
undertake event aggregation, i.e. a set of atomic events
coming from other CAs or CGs is summarised by a

single new event.
pusheventsCG2 [ push events CG3

push events CG1

Context Channel A | | Context Channel B |

push filtered events

Context Abstractor

push events CA2

push filtered events

Context Abstractor

push events CA1

push
filtered events

| Context Channel C | | Context Channel D |
push filtered event pull filtered events,

Aoplcatons

Figure 7. The Sentient Framework Architecture




Both CAs and CGs are conceived for asynchronous and
decoupled interaction with other SIF components by
means of their associated CCs. Nevertheless, they also
provide a uniform synchronous interface to enable
applications to query the latest context they have
monitored. Querying a CA or CG is appropriate for one-
time context needs or when the application is first started.
The notification or publish/subscribe mechanism is
appropriate for repetitive context needs.

An interesting side effect of having implemented CCs

with CORBA Notification Channels is that event suppliers
are offered a quench mechanism by which they can
dynamically realise whether there are consumers interested
on the events they are producing or not. This facility
permits context sources to intelligently stop or resume
event communication, hence making an efficient use of the
network.

CA components are the core components of the SIF
architecture. They undertake the separation of context
capture and interpretation from context use by
transforming the context information flow to the end
application needs. Their behaviour responds to an Event-
Condition-Action (ECA) model. They monitor for
asynchronous event communication, apply conditional
statements over them and whenever a condition is
fulfilled, generate an action (in this case, produce a higher
level event). Between a CG and a final application, an
event can flow through N-tiers of CA components. For
example, a person’s TRIPtag sighting event, “code 1223
seen by camera 30", could be transformed by a Location
Service Context Abstractor into “Diego seen at entrance
corridor’s front-door region”. In turn, a Lab Access
Context Abstractor could map this latter event into an
“authorised person presence” event. This enhanced
contextual event would finaly reach the application in
charge of performing the actual action, i.e. the door
opening effector.

An essential middleware service, named Context Trader,
is used to assist SIF components and applications in the
discovery of other SIF components and their capabilities.
Its operation is analogous to a conventional Trading
Service [16]. When a SIF component is started it exports
to the Context Trader its object reference and the metadata
associated to the types of events and the values of the
event attributes it can provide. In addition, it also reports
metadata about the set of services it can provide, eg.
frame grabbing capabilities. Applications may later request
through constraint expressions for the object references of
the SIF components providing a given type of contextual
event, or whose events contain the set of attribute name
values specified. Furthermore, applications may register
with the Context Trader to be notified when new context
sources providing their events of interest are added or
when existing ones are unregistered. This permits sentient
applications to adapt to changes in the SIF framework.

The main benefits of adopting SIF for sentient
application construction are its run-time reusability and
extensibility features. CCs are shared by context sources
(CGs and CAs) producing events with previously agreed
semantics and by consumers (CAs and applications)
interested on that contextual data. This property can be
useful for Sensor Fusion purposes. New CAs can be
interposed in between other CAs or CGs and applications
in order to adapt and extend the contextua information
flowing through SIF to the end application needs. Our
context abstraction mechanism permits an application to
receive context from an alternative sensor system to the
initially used one without actually requiring any change in
the application code.

5. Middleware for object lifecycle control

Thus far, we have supported our aim of facilitating a
wider deployment of sentient spaces with two
contributions: TRIP and SIF. TRIP provides a cost-
effective and easily deployable |ocation sensor technol ogy.
SIF efficiently manipulates and disseminates contextual
data, smplifying application development. One question
still to be answered, however, is how, once a sentient
system receives a high level event (e.g. “Diego enters his
office”), can the system effectively trigger an action, i.e.
activate, deactivate or migrate a user-bound software
service?

Experimentation with sentient application development
has shown the need for an infrastructure to ease user-
associated services lifecycle control. Otherwise, every
time a new sentient application is developed, the
distributed components involved in its operation have to
be manually started, or at |east the factory objects capable
of creating these components on demand. The lack of this
middleware makes sentient application deployment very
cumbersome. Moreover, user-related services are often
bound to his location and must follow the user as he
moves through the physical space. Therefore, it is
desirable to control both the lifecycle of user-bound
services and their location in a host network.

The LocALE (Location-Aware Lifecycle Environment)
framework defines a simple mechanism for managing the
lifecycle (i.e. activation, migration and deactivation) and
location of distributed CORBA objects residing in a
network. In addition, it adds load-balancing and fault-
tolerance features to the objects whose lifecycle it
controls. The emphasis of its design is placed on providing
a suitable interface for third party object-location
controllers. These controllers, aware of personnel location
and computing resources location, load or capabilities, can
intelligently direct components’ |ocations and lifecycles.



LocALE is limited to offering the object-lifecycle
handling infrastructure required.

LocALE's automatic service activation and migration
capabilities simplify sentient application deployment and
enable CPU intensive systems, such as TRIP, to reuse the
spare resources available in a network. LocALE offers to
applications location-constrained lifecycle control over
distributed objects. On service activation, LocALE-
enabled applications specify the service's initial network
location and the constraints under which that service will
later be migrated or recovered. As result of this process,
LocALE returns to client applications permanent object
references that are valid for the entire lifetime of the
object, no matter how many times that object is migrated
or recovered. A transparent request redirection is
performed upon client remote call issue on an object
whose location changed. Whereas SIF concentrates on
aiding sentient application development, LocALE focuses
on making their deployment simpler. A full description of
the capabilities and implementation of this middleware
software is given at [11].

6. Applications

The TRIP sensor technology has been employed in the
development of several sentient applications. In this
section, two significant examples of its usability in both
off-line and real-time video parsing are given.

6.1. LCE Sentient Library

Conventional tracking technologies attach their active
tags only to entities considered more valuable than the tags
themselves, e.g. computers or personnel. Moreover, these
active tags size and thickness prevent them from being
attachable to small items. TRIP's costless resizable tags
and ample range of identifiers make this positioning
technology suitable even for the location of small and low-
cost items in a physical space. This is the case of
stationary (e.g. staplers or hole punchers), or books shared
by the personnel in an office. People will often change the
location of these items, enforcing other colleagues to
search for them through the office. TRIP's versatility, to
tag and locate any entity in an environment, has been
applied to the problem of finding the location of books
shared by researchersin our laboratory.

The LCE Sentient Library system augments a
conventional library catalogue system with sentient

features. Apart from the typical functionality expected in
such systems, this one offers contextual information about
the books in our lab. Details on the | ast seen book |ocation
and its proximity to other items in the environment are
searchable by the user. Figure 8 shows the result of a book
search through the LCE Sentient Library web front-end.
This application can be viewed online at: http://www-
Ice.eng.cam.ac.uk/Library.

7[5 Boskinasks B Locaton:[retp  //r-1oc. ong. con. o0 o Librory/ogi-bin/shevBookDotails. by /| @) what's Relate.
Book (111537") belonging to category root.LCE-LIBRARY details:

Title: The C+ Programming Language
Author: Bjarne Stroustrup

Year: 1997

Publisher: Addison Wesley

ISBN: 0-201-88954-4

Borrowed by: Diego

Ovmer: Dicgo

Book (*111537”) LOCATION details:

‘The book was last seen at shelf beside Diego's computer in room 10
besides books: [ Programming Mobile Objects with Java, Design
Patterns  Elements of Reusable Object-Oriented Software ] on Tue
May 113:02:49 2001

23

Figure 8. LCE Sentient Library Web Interface

Ideally, the Sentient Library would use cameras spread
throughout our laboratory to monitor in real time the
movements of TRIP-tagged books. The first prototype,
however, uses off-line processing of a video footage with
book sightings to automatically update the book catalogue,
stored in the TRIP Directory Server.

Periodically, the LCE librarian records with a digital
video camera the TRIP-tagged locations and books in our
lab. Every location where a book may be located is tagged
with a location-type TRIPcode. Similarly, TRIPtags are
attached to book spines (see Figure 8). The static data
details associated to books and their locations were stored
in the TDS using its GUI front-end, as shown Figure 6.

Figure 9 depicts the operation of the Sentient Library
system. A Video Frame Server provides access to a
serialised book locations' video footage, whereas a
TRIParser analyses the frames captured. The TDS is used
to update book associated contextual data as result of book
sightings. The Library Catalogue Agent is the core
component coordinating the catalogue updating process.
On initialisation, assisted by LocALE, this agent activates
the Video Frame Server and the TRIParser components. A
web interface is provided for LCE membersto: (1) browse
through book categories and the books in a category, (2)
perform keyword-based search of books, (3) create new
book categories, (4) input new books' details and printoug
their associated TRIPtag (5) and modify book details.
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The off-line video processing nature of this application
did not suit well the SIF application construction model.
The SIF model is devised for applications requiring real-
time notification of contextual information. In this case,
the synchronous method interfaces offered by the
respective distributed components were employed.

The Sentient Library has been in use for more than 6
months and over time has proved to be a popular tool for
the members of our lab. It is conceivable that an enhanced
version of the system could be applied to real libraries,
where users take books from stands and | ater, in an attempt
to help the librarians, place them back in the wrong
location. Librarians could be alerted of books
misplacement while scanning the book stands with a
TRIP-enabled camera, rather than requiring them to
visually inspect every bookshelf in the library.

6.2 Follow-Me Audio

Sentient spaces attempt to provide to users the software
services they require wherever they are. The goal is to
allow users to move freely around these spaces without
undue degradation of the computing and communications
resources available to them. Thus, a common variety of
services provided by Sentient Computing are the so-called
“follow-me” services. A Follow-Me Audio application has
been built that demonstrates TRIP's capabilities as a real-
time identification and location sensor. The Follow-Me
Audio application provides users with music from the
nearest speakers wherever they move in our lab. TRIPtag
wearers movements are tracked by analysing the video
frames provided by several web-cams installed around our
lab. Actions in a distributed jukebox component are issued

by showing to the cameras TRIPtags representing jukebox
control operations.

Figure 10 shows the different distributed components
involved in the implementation of the Follow-Me Audio
application. The core component of the system is the
Follow-Me Audio Agent, an autonomous active object
representing a user. This agent listens to for user
movement events or jukebox control actions events
provided by the SIF framework, and as aresult it migrates
the music with the user or it triggers operations on the

digital jukebox.
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Figure 10. Follow-me Audio Architecture

activate jukebox(" LOCALE Lifecycle
Manager




The Follow-Me Audio Agent operates as follows. Firstly,
the agent registers its interest with the Person Location
Menitor CA's channel on the movement events of the user.
Table 1 shows the registration statement, expressed in the
Extended Trader Constraint Language, that the agent for
user ‘dl231’ submits to this CA's channel for the reception
of this user’s movement events within the LCE premises.
Secondly, the agent registers, in a similar way, with the
Jukebox Action Controller CA’'s channel. Upon arrival of
the first high-level event coming from the Person Location
Monitor CA, the agent activates, through LocALE, the
MP3 player and jukebox components. \When, subsequently
it receives user movement events, the MP3 player is
migrated, again using LocALE, to the computer with
audio output closest to the user. When the user moves out
of the premises the agent destroys both the MP3 player
and jukebox server. On arrival of events from the Jukebox
Controller CA, the agent issues the suitable control
command to the jukebox server.

struct Mbvenent Event {
string personl D
| ocDesc from // e.g. ‘building.floor.roomregion’
locDesc to; [// e.g. CUED.4.LCE-Roonl. caneral

e
( ( ($donmai n_nanme == ' PersonLocationMnitor’) and
($type_nanme == 'Nbvenent’') and
($personl D == ’dl 231') and
(‘LCE ~ $from
)
)

/1l is ‘LCE a sub-string of $.fronP

Table 1. Filtering expression on movement event

Both Person Location Monitor and Jukebox Action
Controller CAs undertake a similar function. They register
with the TRIParser CGs' context channels to receive the
TRIPevents corresponding to their TRIPcode categories of
interest. Then, they interpret the events received, with the
assistance of the TRIP Directory Server, and produce the
high-level events that can directly drive the personal agent
operation.

As the user wanders around the location-aware
environment, the music follows him. The state of the
system and time index into the current song persists as the
components migrate. This application leverages TRIP
tracking capabilities, the SIF application construction
model and LocALE's migration support.

7. Related Wor k

SONY’s CyberCode [20] is a visual tagging system
based on a 2-D square barcode that alike TRIP can be used
to determine the 3-D position and identifier of tagged
objects. The ARToolKit [9] system also chooses a square
marker for a similar purpose, however, its identifier
encoding capabilities are more limited than in the case of
TRIP or CyberCode. Both CyberCode and ARToolKit

technologies provide a high degree of location accuracy
and work in real-time. They have been mainly applied to
the domain of Augmented Reality, in order to correctly
register computer-synthesised information on views of the
real work. However, these square marker technologies are
not as easily identifiable as TRIP circular targets in
cluttered environments and therefore are less suitable for
the object location and tracking domain we target.
Moreover, their marker geometric features require higher
image resolution for accurate recognition and location
extraction than TRIP.

BBC's free-d [23] location system measures the precise
position and orientation of studio cameras, by using an
auxiliary camera mounted on the back of a conventional
moving camera pointing to circular markers, similar to
TRIPcodes, fixed on the ceiling of a TV recording studio.
A hardware implementation of its algorithms is needed to
achieve real-time video processing. The system is used for
virtual reality TV production, being, in contrast to TRIP,
expensive and cumbersome to deploy.

GeorgiaTech’'s Context Architecture project [4] attempts
to make sentient application development as simple as
GUI development. For that it introduces Context Widgets
that separate context sensing from context-use. SIF
abstractions present certain resemblance to the ones
proposed by the Context Architecture. However, SIF
focuses more on efficient context information
dissemination. Microsoft’s EasyLiving [3] project creates
reactive context-aware living spaces without the user
having to wear any location tag or computing device.
Their approach to track people based on colour
histograms, without requiring the user to wear any marke,
has much heavier computational demands and produces
less reliable results than TRIP. AT&T's Sentient
Computing project [1] aims to replace human computer
direct interaction (through mouse or keyboard) by
enabling users to instead interact with their surrounding
space based on the precise location and orientation
provided by the Active Bat Location System. This concept
has been illustrated with several sophisticated sentient

applications [7].

8. Further Work and Conclusion

Thus far, only the entity presence identification capability
of TRIP has been exploited. Future work will address the
creation of sentient applications that make use of the 3D
location and orientation information also provided by
TRIP.

Presently, we are working on the idea of making sentient
application creation feasible even for computer illiterate
users. We believe it is key the involvement of end-users in
the definition of rules that delimit their expectations from
the reactive environment. Only in this way, sentient
systems will respond to users with the right actions at the



right time, satisfying end-user individual needs and
making interactions more satisfactory and undisruptive.
Our ongoing research proposes the association of every
user in a sentient environment with an Event-Condition-
Action Agent, ECAgent in short. ECAgents embody a set
of situation-action rules that govern the interactions of the
user with a Sentient Space. Some progress has already
been done in the automatic code generation of these
ECAgents given a set of IF-THEN rules specified by the
user. A key feature of our approach is that we map the user
input rules into a production systems programming
language's rules, CLIPS [15] specifically. This rules are
passed to a CLIPS inference engine embedded in each
agent that undertakes the rule-based reasoning. The most
challenging part of this work appears to be the design of a
GUI that enables the creation of generic event condition
action rules.

TRIP is a novel cost-effective and easily deployable
location sensor technology. This sensor’s off-the-shelf
hardware requirements, i.e. inexpensive CCD cameras and
CPU processing, makes the creation of location-aware
reactive environments, even in the home, an affordable
proposition. All that is required to augment a standard PC
with visual awareness is a web-cam and TRIP's software.
SIF is an application construction model that eases the
development of sensor-driven systems and efficiently
manipulates and disseminates context information.
LocALE is an object lifecycle and location control
middleware that streamlines user-bound service activation,
migration and deactivation. In addition, it permits
application developers to reuse the spare networked
computing resources in a LAN. LocALE complements
TRIP's goal of minimising the investment cost and
deployment complexity in the construction of sentient
spaces. A couple of TRIP-enabled applications have been
illustrated to validate our contributions.
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