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Abstract

In this paper, we introduce a design of a memory latency tolerant processor called SCALT. We present that
adding the latency tolerant features on the conventional load/store architecture processor will not bring
complexity to the design and the critical path of the processor will not be a�ected with those features. For
the deviation of a latency problem, we have proposed a instruction to check the data arrival existence a
bu�er. This report describes about the SCALT, that uses bu�er check instruction, and its performance
evaluation results, obtained analyzing the SMP system through event-driven simulator.
Keywords: Latency Tolerant,Out of Order Execution,Software Prefetch,Decoupled Architecture

1 Introduction

While processor technology have been improving, the
clock frequency is also increasing. With the increased
requirement for the memory capacity, the DRAM is
still using as main memory for its capacity. Though
speed of data throughput increases thanks to the new
technologies such as SDRAM or RAMBUS, the speed
gap between main memory and processor still exists
: the memory latency.
Fast cache memory is used to �ll this gap. Indeed,

performance goes up with cache capacity for small-
scale programs, e.g. the larger the cache the higher is
the cache hit-rate. But as we know, the overhead of
the miss hit is signi�cant. And the overhead will be
higher in the clocks count when the clock frequency
is higher. In the history, the architects approached
this problem with decoupling the access issue with
the data usage. We got 1) hit-under-the-miss, 2)
miss-under-the-miss, 3) out-of-order conjuncted with
many registers. The idea is simple, "issue the loads
as fast as possible". But if we need more and more
registers to �ll the more latency, we must change the
processor architecture, which introduces compatibil-
ity problems. Or we must use hidden registers which
introduces big complexity to the design.
The cache prefetching is thought good idea for

these problems. But cache is a software transparent
resource, and it is not controllable from the software.
The software should still assume that prefetched data
may not be in the cache, or someone may rewrite the
value. And if we have multiple of processors in a
system, it will cause other performance problems.

If we have a reliable bu�er which is under the con-
trol of a program, the processor design will be more
simple. We don't need complex out of order core only
to wait the memory latency. Or we don't need hun-
dreds of registers for deep unrolling. But just issue
decoupled bu�er transfer requests and well-balanced
number of registers will �ll the latency for the bu�er.
This is what SCALT will do. The decoupled transfer
requests is not restricted to the register's word size.
And the number of the on-the-
y requests can be
vast. Then in the architecture we can make a super
computer's range of memory bandwidth processor.
The bu�er to the register transfer is still restricted
by the processor's load instruction issue rate, but it
is not a big problem than the main memory latency.

1.1 Problems related to the memory

system

1.1.1 Physical limits at data throughput

Related to the LSI packaging, it have been di�cult
to assign pins for data I/O in large quantities. Re-
cently this restriction became less serious when BGA
packaging was introduced, which allows arranging
pins on the face-up side of a chip. Also the upper
limit of signal frequency for I/O signals using CMOS
technology was comparatively low in the past. But
also here transfer rates improved by using technology
with impedance matching. As the data throughput
is improving, the instruction processing performance
is also improving. Ways to achieve higher processing
performance are increasing clock frequency or super
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scalar architectures. Reaching Gigahertz range these
days further increase of clock frequency get techno-
logically di�cult. Also when it comes to super scalar
architectures complexity diminishes speed improve-
ment. Therefore a need for new innovations in pro-
cessor architecture arose. VLIW is one attempt. It
enables parallel data processing but has no e�ect on
data transfer speed. Thus many VLIW based pro-
cessors can e�ciently process basic data types. But
when it comes to large amount of data, memory
throughput becomes a major bottleneck.

1.1.2 Memory latency

Another bottleneck is memory latency. If data can-
not be provided from memory as fast as the proces-
sor requests it, the processor has to wait for mem-
ory and the performance goes down. Therefore ways
of working around memory latency become a matter
for designing high-performance architectures. In re-
cent years multiprocessor systems with shared mem-
ory are commonly used for high-performance applica-
tions. Having multiple processors accessing the same
memory , data respond time becomes even longer.
Thus need of latency tolerant architecture became
even stronger. Traditional high-performance comput-
ers (e.g., vector machine, etc.) can cope with long la-
tency by processing multiple huge data vectors simul-
taneously. But processing small data vectors and the
time needed for proper data vectorization creates an
overhead that drops general performance. Further-
more this type of high-performance computers need
long development period and is quiet expensive com-
pared to microprocessors.
Beneath the vector machine there are not many

architectures that secure high data throughput rates
at instruction level. Recently there are other archi-
tectures providing SIMD (Single Instruction Multiple
Data stream) instructions, but these are restricted to
basic data types.
There are two major methods of providing high

performance with latency tolerance. One is process-
ing independent data while the processor is waiting
for data from memory . A simple example is thread
switching: when a thread waits for data from mem-
ory another thread which uses available data could be
executed in the meantime. Another method to work
around memory latency is to prefetch data to the
cache so that it is available when requested. This is
implemented by analyzing the program 
ow at com-
pile time and insert prefetch instructions at proper
places.
The problem at implementing prefetches is to pro-

vide consistency between cache and memory. Imag-
ine you have a store-instruction between a prefetch
and the corresponding load-instruction and all three
refer to the same memory address. The memory con-
trol unit of the processor has to deal with such over-
lapping cases. Data exchange between memory and
processor has to be bu�ered. The more overlaps a

processor can handle simultaneously the more com-
plex it is. Today's normal end-user processors can
usually handle up to two or four overlaps. Another
problem is cache-thrashing caused by prefetches. If
too many prefetches occur, cache capacity or memory
association frames are exceeded, thus already cached
data is deleted from the cache. If this data is re-
quested again, performance drops because it has to be
fetched again from memory. Also, on multiprocessor
systems performance drops occur when two or more
processors compute data from the same memory area:
Given two processors have the same memory area in
cache, one processor has to re�ll the cache every time
the other processor makes changes to that area. Be-
cause cache has to be consistent with memory, a pro-
cessor with cache prefetches has to provide special
treatment for data-access to memory locations which
got prefetched but not yet used. Thus prefetched
data which got invalid has to be discarded.

2 The Basics of SCALT

We propose an architecture called SCALT, which
does data transfer between memory and processor
asynchronously to the instructions requesting it. Fur-
thermore it provides bu�ers for resources which do
not depend on consistency with memory.
The bu�er consists of many entries of lines. Each

line will be as same length and boundary as the cache
line. And we de�ne three instructions to manipulate
the bu�er entries. We designed the instructions care-
fully that they will not prevent higher clock rating.

� The instructions for the asynchronous transfer
designate one memory location and one bu�er
entry number. Which means we can use usual
address mapping scheme to issue the transfer.
The bu�er entry number directly designates the
location within the bu�er. And the processor
will issue the memory requests with the entry
number information as a tag in a register. The
memory system can process the requests as the
out of order with attaching the tag. When a
request returns the data, processor store the
data into the associated entry by referencing the
tag. There are two instructions "B.FETCH" and
"B.STORE" for the transfers.

� The required number of the bu�er is de�ned by
the processing performance and the latencies.
For example, assume that we have 10GHz pro-
cessor and 200nS memory, if the processor issues
one load at a clock, the required outstanding
bu�er should be 16Kbytes, that is 10 � 109 �
sizeof(double) � 200 � 10�9. If we use 64byte
lines, only 256 entries are required.

Since these entries do not have to be consistent with
memory, the processor does not have to care about
possible instructions which alter memory locations
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fetched or prefetched from. Also processor design
becomes compact as no address checking or special
bu�ering is required. Size and number of bu�er-
entries is con�gurable to �t needs of the target ap-
plication. For small scale applications as in desk-
top computers the SCALT architecture can compen-
sate low memory bus-capacities. Number and size
of bu�er entries is software-independent, thus no re-
compilation is needed to run the well designed soft-
ware on di�erent versions of a SCALT system.

DATA PATH

CACHE

SCALT BUFFER

STREAMING
MEMORY

V ADR DATA

V DATA

LOAD REQUEST(TAG+ADDRESS)

RETURN DATA(TAG+DATA)

DATA

Figure 1: An example load path con�guration with
SCALT

3 The data 
ow in SCALT

The �gure2 is an example of general RISC proces-
sor architectures and SCALT architectures assembly
code. Here, constant (a) of DAXPY is in register
r1. Corresponding data 
ow to the SCALT assem-
bly code is showed in the �gure3. "B.FETCH" is an

load  r2  #1000
load  r3  #2000
mult  r2 r1 r2
add   r4 r2 r3
store r4  #2000

B.FETCH  0 #1000
B.FETCH  1 #2000

  load  r2  #4000 
  load  r3  #4032
  mult  r2 r1 r2
  add   r4 r2 r3
  store  r4  #4032
        ...
  B.STORE  1 #2000

B.FETCH  0 #1000
B.FETCH  1 #2000

  B.CHECK  0
  B.CHECK  1

   load  r2  #4000
   load  r3  #4032
   mult  r2 r1 r2
   add   r4 r2 r3
   store  r4  #4032
        ... 
  
  B.STORE  1 #2000

     

y[i]=y[i]+a*x[i]

RISC SCALT SCALT(B.CHECK)

Figure 2: An example of the scalt assembly code

instruction to fetch the data from the main mem-
ory to the speci�ed entry of SCALT bu�er. The
data size fetched in each time has the same length
as the cache line. "B.CHECK" checks the valid bit

of the speci�ed bu�er entry, and it is an instruction
which returns the value. "B.STORE" is an instruc-
tion which stores data from bu�er entry to the main
memory. The �gure2 has described only fetch to the
0 and 1 bu�er entries number. However, the fetch in-
structions can issue more bu�er entries. Arrival data
at the bu�er entry is read from the virtual mapped
address and loaded into a register, using the usual
load instruction, and used to the arithmetic opera-
tion. Arithmetic results are stored in the bu�er en-
try, which is mapped to a virtual address, by usual
store instruction. When the usual store instruction
�ll a bu�er entry with data, the B.STORE instruc-
tion stores speci�ed entry's data to main memory.
A sparse matrix is important for many real appli-

cations. There are some implementation methods for
this matrix. One of them is a row major compaction
which is represented as : A[L[i]]
But the stride prediction cannot predict the stride

in this case. Because, L[i] doesn't increase consis-
tently. But the SCALT treats a sparse matrix as
below.
The SCALT prefetch the portion of L, and then the

SCALT issues prefetch instruction to the each value
of A[L[i]].

MAIN MEMORY

2000

SCALT BUFFER

B.FETCH

CACHE

REGISTER

r0

ADRSV DATA

4000

0(#4000)

1(#4032)

1008

4032

4064

B.STORE

1000

virtual mapping

0

Figure 3: Data 
ow

4 SCALT Bu�er Check In-

struction

When data has not arrived to a bu�er entry, a pro-
cessor must waits for the data arrival(i.e. a pro-
cessor stalls �gure4). The program investigates the
data arrival using "B.CHECK" instruction, and if the
data doesn't arrive, the program investigate the next
bu�er entry (for example, entry 2, entry 3, etc). The
program executes only the data has already arrived
at the bu�er entry. When the data hasn't arrived,
the processing is advanced to the next bu�er entry,
and it checks data arrival again later. And if the data
has arrived, it is executed, and so on.
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B.CHECK  0

SCALT BUFFER

V ENTRY

0

1

B.CHECK  1

OK

NOT
DATA

0(#4000)

1(#4032)

2(#4064)

0

1
load r1 #4000 

0(#4000)

1(#4032)

2(#4064)

OK

load r2 #4032

NOT 
DATA

load r1 #4000 

STALL

load r2 #4032

NEXT B.CHECK

Figure 4: The example of B.CHECK instruction

The �gure5 shows an example program 
ow with
SCALT bu�er check instruction(B.CHECK). With
the deviation of the memory latency, the data in a
bu�er entry may not arrived yet. In this case, bu�er
entries of non-arrived data is distinguished by bu�er
check instruction, and the arithmetic operation is
processed only for the ready entries.
Bu�er entries with non-arrived data are managed

by non-arrived data list and they are checked in every
loop until the data arrival. When the data arrives, it
is processed and it respective bu�er entry is removed
from the non-arrived data list. The non-arrived data
list is controlled by the software.
The B.CHECK take 1 clock cycle to �nish opera-

tion. The wait time for the data arrive turns insensi-
tive because the processor doesn't stall.

5 Performance evaluation

In the hardware performance evaluation, we used the
event-driven simulator, coded in C language. We
used the Livermore Loops, and the address genera-
tion patterns was speci�ed by a special compiler for
this simulator.
The simulation model was showed in the �gure6.

The program of Livermore Loops is in INST MEM
on the model. Processor fetches one instruction per
one cycle from INST MEM, and it performs the in-
struction. This model is the same as the general pro-
cessor model. The number of processor, used as a
parameter, was from 1 to 64. The connection be-
tween a main memory and a processor was crossbar
connection. The number of memory banks was made
to increase in 2N(N = 0; 1; 2; :::; 9).
When the number of memory banks changed, we

investigated the variation of the average rate of bank
utilization. The memory banks number is set con-
stant, and when changing the number of processors
and the number of bu�er entries, it was investigated
how many times the loop execution occurred. The
parameter used in the simulation was shown in the

Yes

 

Yes

No

No

The data prefetch is 
performed about all 
buffer entries

SCALT BUFFER
   CHECK

The buffer entry’s 
number adds to the 
non-arrived list  

Data hasn’t alived

Data has arrived

Processor processes 
the buffer entry’s data

A prefetch is 
performed to a 
processed buffer entry

 Was it check 
 all buffer
 entries ?

A processing and a prefetch
is performed to all buffer 
entries of the non-arrived 
list 

Did it process 
all data ?

E N D 

Figure 5: The 
ow chart using the Bu�er Check In-
struction

table1.

Table 1: Simulation Parameter
CPU Cycle Time 5nS
Memory banks number L
Data transmission time between LSI 5nS
SC Request Pitch 10nS
Length of Memory Bank 16B
Length of Bu�er Entry 32B
Access Cycle of Memory 250nS
Memory Access Time M nS
Num of Bu�er Entry N

The Livermore Loops was executed, repeatedly,
during a constant time. Memory bank con
icts in
the SMP system was caused with frequently, and the
memory latency in SCALT fetch was made to change
dynamically. SCALT bu�er check instruction �nishes
a processing in one clock. Access to Non-arrived data
list are cache access on an actual hardware. In sim-
ulation, SCALT accesses non-arrived data list in one
clock. SCALT adds bu�er entry of non-arrived data
to list in one clock, and it removes bu�er entry of
non-arrived data from list in one clock. These are
shown as overhead on low rate of memory utilization
in following simulation result.
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CPU

INST
MEM

SCALT
BUFF

REQ QUE

LOAD QUE

CPU00

LOAD
BUS

MEMORY
BANK

QUE

SCU MCU

REQ
BUS

Figure 6: Simulation model

6 Simulation result

The simulation was evaluated to the Livermore Loops
kernel 1 and 4. The simulation results was showed
from the �gure7 to the �gure14.
From the �gure7 to �gure10, we compared the per-

formance results between common RISC processor
and the SCALT. The load requests number to the
memory system of the RISC processor's cache miss
was set to 2 or 4.
The �gure7 and the �gure8 show that the per-

formance of SCALT was almost proportional at the
memory banks. This shows that di�erent perfor-
mance system can be built changing the memory
banks number in the SCALT.
The �gure9 and the �gure10 show that SCALT can

get a high performance with the few number of pro-
cessors. The SCALT processing saturation was based
on the memory system performance limit.(�gure10)
SCALT performance using bu�er check instruction
was lower than SCALT performance UN-using it, in
case of few processors. In case of few processors, the
rate of memory utilization is low. This show that in-
struction overhead of bu�er check instruction causes
performance disadvantage in case of little non-arrived
data number.
From the �gure7 to the �gure12, we evaluated the

performance running the kernel 1. When a bu�er
check instruction is used, it can be expected about
20% in the performance improvement. This shown
that the e�ect of bu�er check instruction was higher
than bu�er check instruction overhead.
The �gure13(evaluation running the kernel 4)

shows the almost same result than the �gure11. That
is, when there is stride, the e�ect of a bu�er check in-
struction can be expected.
The �gure14 shows that about 30 bu�er entries are

enough to this kernel 4 simulation.

7 About implementation

The implementation of SCALT bu�er is almost the
same as that of a cache. As the simulation shows it
is e�ective even with a few kilo bytes. That is, the
bu�er can be smaller than a cache. Because we do
not add a heavy load to a processor critical pass, we
consider that SCALT will not hurt the processor's
clock frequency.

8 Conclusion

We described our proposal architecture with a soft-
ware controllable bu�er. And wemade a performance
evaluation for this architecture and shows the e�ec-
tiveness of our architecture.
Our proposed SCALT got higher performance than

the general RISC processor to deviation of the mem-
ory latency, and improved the performance almost
proportional to the number of the memory banks,
and it can get a higher performance with the fewer
processors.
However, the e�ect of bu�er check instruction de-

pend on applications or the memory performance as
shown in the simulation result, therefore we needs
further evaluation.
HDL version SCALT is now in the logic simulation

phase. From now on, we will desire to do a simulation
on various objects, develop a compiler and library,
and make a FPGA version of SCALT running.
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Figure 8: Performance to change of the memory
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Figure 9: Performance to change of the number of
CPU(256BANKS)
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Figure 10: The average of the rate of bank utilization
to change of the number of CPU(256BANKS)
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Figure 12: The average of the rate of bank utiliza-
tion to change of the memory banks number(kernel1-
8,16cpu)

0

5000

10000

15000

20000

25000

30000

35000

40000

50 100 150 200 250

P
E

R
F

O
R

M
A

N
C

E

Num of BANK

16CPU(BC)
8CPU(BC)

16CPU
8CPU
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banks(Kernel4 -8,16cpu)
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