
OpenMP Issues Arising in the
Development of Parallel BLAS and

LAPACK libraries
Dr. C. Addison and Dr. Y. Ren

Fujitsu European Centre for Information
Technology, Hayes, UK

Abstract: Dense linear algebra libraries need to
cope efficiently with a range of input problem sizes
and shapes. Inherently this means that parallel
implementations have to exploit parallelism
wherever it is present. While OpenMP allows
relatively fine grain parallelism to be exploited in a
shared memory environment it lacks features to
make it easy to partition computation over multiple
array indices or to overlap sequential and parallel
computations. The inherent flexible nature of
shared memory paradigms such as OpenMP poses
other difficulties when it becomes necessary to
optimise performance across successive parallel
library calls. Notions borrowed from distributed
memory paradigms, such as explicit data
distributions help address some of these problems,
but the focus on data rather than work distribution
appears misplaced in an SMP context.

1 Introduction
The BLAS and LAPACK libraries [1] are widely
used by scientists and engineers to obtain good
levels of performance on today’s cache-based
computer systems. Distributed memory analogues,
the PBLAS and ScaLAPACK [2] have been
developed to assist people on this type of parallel
system. Shared memory (SMP) variants tend to
only be available from hardware vendors (e.g.
Intel’s Math Kernel Library, [3]) or from library
companies such as NAG Ltd. or Visual Numerics
Ltd.

Consistent with this pattern, Fujitsu is soon
releasing its first SMP version of the parallel BLAS
and LAPACK libraries for its PRIMEPOWER
series. What makes this release interesting is that it
was written exclusively using OpenMP, rather than
a special purpose thread library. In the course of
developing these libraries, several issues arose
concerning OpenMP. Some of these issues can be
handled by careful use of OpenMP directives.
Other issues reveal weaknesses in the current
specification that might be addressed in future
versions of the specification and still other issues
reveal weaknesses that are inherent in this approach
to parallelisation and may be difficult to resolve
directly.

In the rest of this paper, we present a brief overview
of the SMP environment on the Fujitsu

PRIMEPOWER. We then discuss some of the basic
library issues surrounding the BLAS and how we
have resolved these using OpenMP. Parallel
performance in LAPACK routines is often obtained
through a sequence of calls to parallel BLAS and
by masking sequential computations with parallel
ones. The latter requires splitting thread families
into groups. The current OpenMP specification
does not support this particularly well, but some
attractive extensions have been proposed (e.g. the
suggestions in [4]) that make this approach simpler.
Finally, many LAPACK routines have kernels that
consist of a sequence of consecutive BLAS calls
within a loop. When these calls operate on just
vectors, or perform matrix-vector type operations,
they are sensitive to the migration of data from one
processor’s cache to another and by the overheads
that result from making each BLAS call a separate
parallel region. Avoiding such overheads is not
always possible and the paper concludes by
examining some of the limitations that are inherent
to OpenMP.

2 SMP programming on the Fujitsu
PRIMEPOWER
The Fujitsu PRIMEPOWER is an SMP system that
supports up to 128 processors in a Solaris
environment [6]. The current processor employed is
the SPARC64 IV. This is a SPARC V9 architecture
compliant processor that is similar to Sun’s
UltraSPARC processor series. The SPARC64 IV
contains extensive support for out-of-order and
speculation execution. It has a fused floating-point
multiply-add as well as a separate floating-point
add pipeline. Each processor has 128 Kbytes of
data cache and a similarly sized instruction cache.
There is also a unified second level cache of 8
Mbytes. In July 2001, the clock speed of these
processors was 562.5 MHz, so the achievable peak
performance is 1125 Mflop/s.

Multi-processor systems are built from system
boards that have up to 4 processors and 16 Gbytes
of memory. There is a maximum of 8 such boards
in a node (cabinet) and then up to 4 nodes can be
connected together via a high-speed crossbar. The
system has nearly uniform memory access across it
potential 512 GBytes of memory. As the SPEC
OpenMP benchmarks, [7], show, it is possible to
obtain parallel speed-ups using the full 128
processor configuration on non-trivial applications.

The parallel programming environment is provided
by Fortran and C compilers that support OpenMP
Version 1.1, [8]. Both compilers also have
extensive support for the automatic parallelisation
of user codes. Fujitsu’s Parallelnavi batch

environment, accessible via NQS, binds threads to
processors, processors to jobs and provides support
for 4 MByte pages. These all reduce performance
variations relating to system and other user activity.
Therefore, provided there are one or two processors
available for systems’ use and for handling basic
interactive facilities, user jobs run on effectively
dedicated processors.

3 Designing OpenMP parallel BLAS
One of the challenges in providing parallel BLAS
and LAPACK routines is that most of BLAS
routines contain assembler kernels. Therefore
OpenMP parallelism must lie outside of these
kernels. This effectively introduces yet another
level of blocking within the routines. The practical
aspects of this and related issues are illustrated by
the general matrix by matrix multiplication routine
dgemm. This family of multiplications also forms
the kernel around which all the other matrix-matrix
BLAS operations are constructed, see [9].

The basic operation that dgemm supports is:
CABC βα +← , where C is a general m by n

matrix, A is a general m by k matrix and B is a
general k by n matrix. Both α and β are scalars. In
addition either A or B can be transposed, with a
consistent change in dimensionality. Each member
of this family of four operations is highly parallel.
When m and n are sufficiently large, an effective
solution is to partition the problem into an
appropriate number of sub-matrices and perform
each sub-matrix multiplication in parallel. With 4
threads one partition would be







+





×










=






2221

1211

2221

1211

2221

1211

2221

1211

CC

CC

BB

BB

AA

AA
CC

CC
βα

This then leads to:

 112112111111 CBABAC βαα +×+×= ,

 122212121112 CBABAC βαα +×+×= ,

 212122112121 CBABAC βαα +×+×= ,

 222222122122 CBABAC βαα +×+×= ,
where these sub-matrix operations are independent
of one another and can be performed by separate
calls to the sequential dgemm on different threads.
The only challenge is to ensure that the number of
threads allocated to a dimension is proportional to
m and n and that the sub-blocks are large enough
that near peak sequential performance is obtained.
Since OpenMP has no equivalent to the High
Performance Fortran (HPF) notion of processor
arrays with shape [10], the library writer must map
the 2-D thread partitioning onto the 1-D array of
thread identifiers. This is not difficult, but the
mapping clutters the code and makes it slightly

harder to maintain. This is particularly relevant
when one recalls that this mapping must be
performed separately for each variant of the
operation because the partitioning of the matrices A
and B across sequential calls depends on whether
they are transposed or not.

Performance of dgemm on the PRIMEPOWER is
good. Single processor performance using a 562.5
MHz system on 512 by 512 to 1024 by 1024
matrices is around 1 Gflop/s. On 16 processors, the
performance is around 12 Gflop/s on the same sized
problems and on 64 processors, the performance of
dgemm on 512 by 512 to 1024 by 1024 matrices is
around 32 Gflop/s.

The strategy of partitioning BLAS operations into a
series of independent sequential BLAS calls has
proven effective. However, the performance of the
matrix-vector and vector-vector BLAS routines is
sensitive to whether the matrix was already in
cache (the “hot-cache” case) or not (the “cold-
cache” case). This will be discussed in more detail
at the end of this paper.

4 Building OpenMP LAPACK
routines on top of OpenMP BLAS
One of the design decisions in LAPACK was to
make extensive use of the matrix-matrix BLAS in
order to block computations and thereby make
better use of data in cache, [1]. It was also felt, with
some justification, that the performance of major
LAPACK computation routines would improve
simply from the use of SMP versions of the BLAS
routines. While the operations performed between
matrix blocks tend to parallelise well, the
operations performed within blocks tend to be
sufficiently fine grain that performance is mediocre
sequentially and scales poorly.

A classical way to remove such sequential
bottlenecks is to overlap the sequential
computations on one processor with different
parallel computations performed by the remaining
processors.

Consider the pseudo-code for the main block of the
LU-decomposition routine dgetrf as shown in
Figure 1.

The operations performed within dgetf2 and the
pivot updates are best performed on a single
processor. The routines dtrsm and dgemm are
BLAS routines that operate on large parts of the
matrix and that tend to perform well in parallel.
Observe that the first nb columns of the trailing
matrix will be the panel used for factorisation with

the next value of j. This leads to the observation
that this factorisation could be overlapped with the
remainder of the update of the trailing matrix.
Indeed, it is possible to do better than this, as is
shown in Figure 2 with a segment of a variant of

dgetrf containing OpenMP directives.

It is now necessary to distinguish between the
names of the sequential BLAS called from within a
parallel region (as in Figure 2) and the parallel
BLAS called from a sequential region, but the
functionality of the routines is identical. The
pseudo-code in Figure 2 allows the factorisation of
the second and subsequent panels to be overlapped
with the updating of the remainder of the matrix.
The code will only work if thread 0 updates at least
A(j:m,j:j+jb-1)prior to factoring this same
block. Further notice that the partitioning in the
dl_gemm call is only over columns, which will
limit scalability on small to medium problems.

Improving scalability further runs into limitations
of the current OpenMP standard. Effectively, three
work groups of threads are desired. The first group
contains thread 0. The second group (empty in the
code of Figure 2, but probably just 1 or 2 threads)

consists of threads that update a part of
A(j:m,j:j+jb-1) and then proceed to update a
part of A(j:m,j+jb:n). The third group of
threads (the majority of the threads) just updates a
portion of A(j:m,j+jb:n). The goal is to

distribute the matrix update across all threads
subject to the constraint that thread 0 has additional
processing to perform when factoring
A(j:m,j:j+jb-1).

If there were a large (say 16 or more) number of
threads, it would be desirable to partition the matrix
multiply performed with the third thread group by
both rows and columns. This is only possible if the
operations can be synchronised properly. For
instance, before a part of the matrix multiplication
can be performed, all earlier operations (e.g. the
call to dl_trsm to update the sub-matrix that will
form B in the subsequent matrix multiply) must
have updated all the relevant parts of the sub-
matrices. A block of columns that is partitioned
among several threads for the matrix multiply will
be composed from several column blocks that were
updated independently in the previous call to
dl_trsm. Therefore explicit synchronisation is
required.

 do j = 1, min(m, n), nb
 jb = min(min(m, n)-j+1, nb)
*
* Factor diagonal and subdiagonal blocks and test for exact
* singularity.
*
 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)
*
* Adjust info and the pivot indices. (Code not shown!)
*
*
* Apply interchanges to columns 1:j-1. (Code not shown!)
*
 if(j+jb.le.n) then
*
* Apply interchanges to columns j+jb:n. (Code not shown!)
*
*
* Compute block row of U.
*
 call dtrsm(’left’, ’lower’, ’no transpose’, ’unit’, jb,
 $ n-j-jb+1, one, a(j, j), lda, a(j, j+jb),
 $ lda)
 if(j+jb.le.m) then
*
* Update trailing submatrix.
*
 call dgemm(’no transpose’, ’no transpose’, m-j-jb+1,
 $ n-j-jb+1, jb, -one, a(j+jb, j), lda,
 $ a(j, j+jb), lda, one, a(j+jb, j+jb),
 $ lda)
 end if
 end if
 end do

Figure 1 - Pseudo-code for dgetrf

With the current OpenMP specification, this is only
possible through the use of several sets of locks.
Thread groups, as suggested in [4], provide a
cleaner solution. Thread groups 1 and 2 would
work over a range of the matrix independent from
that of the third thread group. These first two
groups would be kept as one group to update
A(j:m,j:j+jb-1). The groups would then be
split after a barrier synchronisation so that thread
group 1 performed the factorisation and thread
group 2 proceeded with another portion of the
matrix update. A barrier synchronisation just for the
third thread group would ensure that its matrix
multiplication could be partitioned optimally.

A simple enhancement to OpenMP would be to

allow the programmer to specify the first thread id
in a parallel loop as well as the chunk size in a
static partitioning. Threads are then allocated to
chunks in a wrap-around fashion. This would make
it easier to bind threads to array indices in
applications such as LU decomposition. An
alternative to the parallel loop in Figure 2 with this
addition is given in the short loop fragment below

... Code omitted
 i_n = mod((j-1)/nb,
 & omp_get_num_threads())
*$OMP DO schedule=(static,chunk=1,
*$OMP& start=i_n)
 do k=j,n,nb
* Update A(j:m,k:min(k+nb-1,n))
 if (k .eq. j) then
* Factor A(j:m,j:j+nb-1)
 end if

Figure 2 - OpenMP overlapped dgetrf

 jb = min(min(m, n), nb)
 call dgetf2(m, jb, a(1, 1), lda, ipiv, info)

 jmax = min((n/nb-1)*nb,m)

*$OMP PARALLEL default(shared) private(range_n,i,low_n)
 n_pmax = omp_get_num_threads()-1

 do j = nb+1, jmax, nb

 jb = min(jmax-j+1, nb)
*$OMP DO schedule(static)
 do i_n=0,n_pmax
*
* Compute range_n and low_n for each value of i_n (Not shown)
*
 call dlaswp(range_n, a(1, low_n),lda,j-nb,j-1,
 $ ipiv, 1)

 call dl_trsm(’left’, ’lower’, ’no transpose’, ’unit’,
 $ nb, range_n,one, a(j-nb, j-nb), lda,
 $ a(j-nb, low_n), lda)
*
 call dl_gemm(’no transpose’, ’no transpose’, m-j+1,
 $ range_n, nb, -one, a(j, j-nb), lda,
 $ a(j-nb, low_n),lda,one,
 $ a(j, low_n),lda)

 if (i_n .eq. 0) then

 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)
*
* Adjust INFO and the pivot indices. (Code not shown!)
*
 end if
 end do
*$OMP END DO
*$OMP MASTER

 call dlaswp(nb,a(1,j-nb),lda,J, J+JB-1, IPIV, 1)
*$OMP END MASTER
*$OMP BARRIER
 end do
*$OMP END PARALLEL
*
* Finish by updating then factoring a(jmax+1:m,jmax+1:n)
*

 end do
*$OMP END DO
... Code omitted

Similar problems to those in the dgetrf routine
relating to scalable performance can also be found
in many other LAPACK routines. Essentially the
difficulty is that the current and OpenMP Fortran
Version 2.0 standards do not offer sufficient
flexibility in the way in which thread groups can be
defined. At present, synchronising the activity of a
sub-set of threads in a parallel region requires the
use of locks, which can become very cumbersome.
This problem becomes worse with recursive
algorithms, which are becoming increasingly
important in linear algebra. This includes
formulations of basic linear algebra operations such
as factorisation, see [11], as well new algorithms,
such as the divide and conquer algorithm for the
symmetric tridiagonal eigenvalue problem included
in LAPACK Release 3.0. Therefore something like
the thread groups proposed in [4] or the work
queues proposed in [5] will be required in a future
OpenMP specification.

Another difficulty with writing efficient OpenMP
LAPACK routines relates to the overheads
associated with several successive calls to parallel
BLAS routines within one loop of an LAPACK
routine. For instance, in the main loop of the
symmetric tridiagonalisation routine dlatrd there
is a sequence of 5 calls to matrix-vector BLAS,
followed by 3 calls to vector BLAS. Each of these
creates its own parallel region and each defines
how many threads are appropriate for the operation
and how work will be partitioned among these
threads. In a given call to dlatrd, this sequence
of calls of BLAS routines is executed about 64
times, so that at least 512 different parallel regions
are created. Even though the overheads associated
with creating a new parallel region are low, the
accumulated overheads of this many different
regions impact the performance on smaller
problems.

The current solution to this problem is to create
special “in-parallel” versions of the relevant BLAS
routines. These routines are written assuming that a
parallel region has already been created. It is then
possible to have only one parallel region for the
entire calling routine. While this reduces the
overheads of creating the parallel regions, there is
no mechanism within OpenMP by which the
partitioning of work among threads within these
various routines can be organised to maximise the
reuse of data that is already in the cache of
particular processors. This can be a major
performance difficulty and it is one for which no

solution is currently available.

5 Desired: OpenMP standards to
support cache reuse
Cache reuse is related to the discussion of data
distribution directives for NUMA systems in
OpenMP, see [12] and [13], but it is not identical.
For example, the notion of data distributions among
processes is not particularly helpful on a uniform
memory access system like the PRIMEPOWER.
Effectively such approaches assume that
distribution is an attribute of the data. This is a
useful model in a distributed memory / shared
index space environment for languages such as
HPF. Latencies to access remote data elements are
orders of magnitude higher than access latencies to
local data elements and the memory hierarchy is
such that there are substantial performance benefits
by communicating one large data block rather than
many small ones.

In a shared memory environment, there are fewer
benefits to copying one large data block between
the cache on one processor to that on another over
copying many small data blocks, provided the small
blocks are larger than the size of a cache line.
Rather than distribution being an attribute of the
data, it might be more useful to regard the
partitioning of index spaces among threads as an
attribute of the operator, with data residing in the
cache of a particular processor being a side effect.
The objective in this setting would be to minimize
the differences in index space partitions between
successive parallel loops. Alternatively, if the
differences in index space partitions were known
between parallel loops, a less demanding objective
would be to define a prefetch strategy that allowed
the cache-resident data to be loaded consistent with
the second index space partition while executing
over the first index space partition.

The performance problems due to different
partitionings and hence data lying in the wrong
cache can be severe. Consider the code fragment
for a parallel rank-1 update. This is the core
operation performed in the BLAS routine dger.

*$OMP PARALLEL DO schedule(static)
*$OMP& default(shared) private(i)
 do j=1,n
 do i = 1,m
 a(i,j) = a(i,j) + x(i)*y(j)
 end do
 end do
*$OMP END PARALLEL DO

This is a highly parallel operation that should scale
well for a range of problem sizes. However, parallel
performance is heavily dependent on what precedes
this parallel region. For instance, if the array a is

defined immediately beforehand using a single
thread and the array is small enough that it can fit
into that processor’s Level 2 cache then parallel
performance will be terrible. It will be faster to
perform the update on the original processor.

If the problem is large enough that the entire
problem does not fit into a single processor’s cache,
then parallel scalability will be better because cache
locality is not as important. If the array is defined in
an earlier parallel region using a partitioning similar
to that used in the above code fragment then
parallel performance will be excellent.

Optimal cache use cannot be determined from just
local information about the current data locality and
the next operation to be performed. For instance,
suppose that several consecutive rank-1 updates
were performed after the array had been initialised
in a sequential section and that the array was small
enough that it would fit into the collective Level 2
cache of the processors involved. A local decision
to maximize cache reuse by limiting parallelism to
a single thread would be the right decision with 1
rank-1 update, but it would certainly be the wrong
decision if there were 50 updates.

The rank-1 update also provides an example of how
information from the calling program to the called
routine can improve cache reuse. It is possible for
the rank-1 update to be parallelised across both
array dimensions and so that the actual partitioning
used could be chosen to fit well with the
partitionings in earlier and subsequent parallel
sections while still using all available threads.

The adaptability of the parallel rank-1 update (as
well as that of matrix multiplication and several
other operations) suggests that HPF-style data
distribution directives would be useful. If the data
has been distributed among processes1 sensibly,
then many parallel BLAS routines should work
well just by inheriting this distribution. However,
this thinking misses the critical point – these
routines are called from within larger applications
and it is when defining effective data distributions
for these applications that the limitations of this
approach become clear.

Consider LU decomposition as discussed in Section
4. This application requires a doubly block-cyclic
data distribution, see [2] for a justification, where
the blocking factor is consistent with that required

1 When explicit data distributions are imposed, the
computation units become more heavy weight,
which is conveyed by referring to them as
processes rather than threads.

for good performance from the single processor
matrix multiplication. The cyclic distribution is
required to have a degree of load balance among
the processes. The block cyclic distribution is
performed over both rows and columns of the
matrix in order to have scalable matrix multiply
performance. However, the induced 2-D process
grid forces the “in-block” factorisation
(corresponding to calling dgetf2 in Figure 1) to
be performed over multiple processes. This will
reduce performance except on very large systems.
The block cyclic data distribution also makes it
difficult to overlap this factorisation with updates to
the rest of the matrix. While the data blocks are the
same size, the amount of computation required over
a sub-group of them is about 33% larger.

Compare these difficulties with those involved in
performing LU decomposition with OpenMP. If the
in-block factorisation is not overlapped with other
computation, then the code in Figure 1 becomes
parallel by providing parallel BLAS. The matrix
multiply will be partitioned over both row and
column indices in the call to dgemm. If this
factorisation is to be overlapped with other
computation this can be done relatively simply, as
shown in Figure 2. The difficulties arise in trying to
combine the overlap with an optimal matrix-
multiplication while keeping the work distributed
evenly among threads, but these could be handled
by making thread management in OpenMP more
flexible.

Therefore, data distribution directives are useful on
distributed memory systems. Something like
dynamic page management as discussed in [13]
might be a good compromise on NUMA systems.
Neither approach appears useful on a uniform
memory access system such as the PRIMEPOWER.

However, difficulties with cache reuse remain. If
explicit data distributions are not a solution, then
what is? Perhaps compilers should become “BLAS-
aware” so that potential performance problems can
be flagged and possibly fixed during compilation.
Clear documentation about the parallelisation
strategy used in each routine is one essential way to
avoid pitfalls such as alternating between sequential
and parallel sections. It would be useful if library
providers could agree upon a standard format and
terminology for index partitioning information.

There may be a need for information to be available
at run time. One possibility would be for a library
of parallel routines to include a “partitioning
inquiry” function. Given a routine name, a valid set
of input arguments and the number of threads, this
function could return a descriptor that defined how

the index space of the input and output arrays was
partitioned among the threads. Notice that the
intention is to provide this information for a
specific instance of a routine invocation. For
example, the way in which the array indices are
partitioned among threads in a call to dgemm
depends not only on the value of the arguments N,
M and K but also on whether array A or array B is
transposed and how many threads are available.
Given this information, it might be possible for the
writer of the calling program to organise the
computation done at this level to reduce the amount
of cache migration that will result from calls to a
particular routine.

While this idea has merits, there are many
difficulties with it. Firstly, there is the need for all
of the partitioning algorithms employed in a routine
such as dgemm to be accessible from the inquiry
function. This also implies that the control structure
of each routine is reproduced. When a parallel
library routine was written, would it be possible to
generate automatically a “shadow” routine that
could generate the information required by the
inquiry function? How general is the issue of cache
migration, does it extend much beyond linear
algebra? Would inquiry functions provide the
information required by a user? How complex does
the library routine have to become before this type
of information cannot be provided or is of limited
assistance in improving performance? Is there merit
in standardising the format of descriptors, possibly
to the extent that they become part of the OpenMP
specification?

6 Conclusions
OpenMP provides a convenient means by which
users can exploit SMP parallelism. However,
obtaining good SMP performance on more than a
handful of processors requires careful attention
being paid to all of the standard parallelisation
issues. OpenMP provides mechanisms to address
most of these issues, but the current standard leads
to code that is more cumbersome and harder to
maintain than is desirable. While OpenMP provides
the flexibility and low overheads to exploit loop
parallelism, it lacks facilities to optimise the
performance of a sequence of such parallel loops by
exploiting data cache-locality.

There is an argument for including index
partitioning as an attribute of the arguments in calls
to routines containing parallel loops. There might
also be benefits in organising parallel routines so
that one call option was to determine the index
partitioning but not perform any further
computation. However, when parallel routines have

a fixed Fortran 77 interface, the problems become
more difficult and it is incumbent upon the library
developer to provide users with sufficient
information so that they can make informed choices
about the best way in which to use such parallel
routines.

7 References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J.

Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov,

and D. Sorensen, LAPACK Users’ Guide, Third

Edition, SIAM, Philadelphia, PA, 1999.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo,

J. Demmel, I. Dhillon, J. Dongarra, S.

Hammarling, G. Henry, A. Petitet, K. Stanley, D.

Walker, R. C. Whaley, ScaLAPACK Users’ Guide,

SIAM, Philadelphia, PA, 1997.

[3] Intel Limited, Intel Math Kernel Library, Version

5.0, 2001,

http://developer.intel.com/software/products/mkl/i

ndex.htm

[4] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguadé,

J. Labarta and N. Navarro, “OpenMP Extensions

for Thread Groups and Their Run-time Support”,

International Workshop on Languages and

Compilers for Parallel Computers (LCPC’00),

New York (USA), August 2000.

[5] S. Shah, G. Haab, P. Petersen and J. Throop,

“Flexible Control Structures for Parallelism in

OpenMP”. In 1st European Workshop on

OpenMP, Lund (Sweden), September 1999.

[6] N. Izuta, T. Watabe, T. Shimizu and T. Ichihashi,

“Overview of the PRIMEPOWER 2000/1000/800

Hardware”, Fujitsu Scientific and Technical

Journal, Vol. 36, No. 2, pp.121-127, December,

2000, (http://magazine.fujitsu.com/us/vol36-

2/paper03.pdf).

[7] SPEC Organization, “Standard Performance

Evaluation Corporation OpenMP Benchmark

Suite”, June 2001,

(http://www.spec.org/hpg/omp2001).

[8] OpenMP Architecture Review Board, Open MP

Fortran Application Program Interface 1.1,

November, 1999,

http://www.openmp.org/specs/mp-

documents/fspec11.pdf.

[9] B. Kågström, P. Ling and C. Van Loan. “GEMM-

Based Level 3 BLAS: High-Performance Model

Implementations and Performance Evaluation

Benchmark”, LAPACK Working Note 107,

University of Tennessee, CS-95-315, October,

1995.

[10] C. Koebel, D. Loveman, R. Schreiber, G. Steele,

and M. Zosel, The High Performance Fortran

Handbook, MIT Press, Cambridge,

Massachusetts, 1994.

[11] R. C. Clint and J. Dongarra, “Automatically

Tuned Linear Algebra Software”, LAPACK

Working Note 131, University of Tennessee, CS-

97-366, 1998.

[12] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J.

Harris, C.A. Nelson, C. D. Offner, “Extending

OpenMP for NUMA machines”, Proc.

Supercomputing 2000, Dallas, November, 2000.

[13] D. S. Nikolopoulos, T. S. Papatheodorou, C. D.

Polychronopoulos, J. Labarta and E. Ayguadé, “Is

Data Distribution Necessary in OpenMP?”, Proc.

Supercomputing 2000, Dallas, November, 2000.

