Low Energy Clustered Instruction Fetch and Split Loop Cache
Architecture for Long instruction Word Processors

Murali Jayapala, Francisco Barat, Pieter Op de Beek, Francky Catthoor and Rudy Lauwereins *

ESAT/ACCA, K.U.Leuven, Belgium
{mjayapal, fbaratqu, pieter }@esat.kuleuven.ac.be

Abstract

In current embedded systems for multimedia-oriented
applications, low power is one of the key constraints.
The core of such systems are typically application-
specific programmable processors (ASIPs). Power anal-
ysis of such processors, especially the long instruction
word processors, indicate that a significant amount of
power is consumed in instruction memory hierarchy and
associated control. Past proposals have addressed this
problem by inserting a loop cache close to the data path
resulting in a clear power saving. In this paper we pro-
pose a software-triggered split loop cache placed close to
the data path combined with a clustered fetch mecha-
nism, to ameliorate the situation. Further, the fetch and
issue mechanisms are clustered in accordance with the
application-specific data path clustering. Also, within
each cluster a software triggered instruction buffer is em-
ployed. Initial experimental results performed on several
representative media application benchmarks show the
effectiveness of this architecture in achieving low power.

1 Introduction and Motivation

In current embedded systems for multimedia oriented
applications, low power is one of the key constraints.
The core of such systems are typically application spe-
cific programmable processors (ASIPs). Recent trends
have shown that for multimedia oriented applications
like video compression and decompression, wireless com-
munications, speech and image processing, VLIW pro-
cessors and alike are particularly effective in achieving
high performance [10]. However, power analysis of such
processors indicate that up to 20 to 25% of total pro-
cessor power is consumed in instruction memory hier-
archy and associated control [2][17]. In our proposal,
we address this problem of reducing power consumption
in instruction memory hierarchy and associated control,

*This work is supported in part by MESA under the MEDEA
program.

IMEC, Leuven, Belgium
{catthoor, lauwerei}@imec.be

by means of a clustered instruction fetch and split loop
caches. Also, we provide a simple framework for analysis
of energy requirements in different loop cache schemes
depending on the application.

Some of the motivations for our approach have been
derived from the observations made in the VLIW ar-
chitectures and in several representative media bench-
marks. These observations are explained in sections 1.1
and 1.2.

1.1 Architecture

The instruction fetch/decode and the instruction cache
hierarchy in most of the current VLIW processors are
as illustrated in Figure 1. In every instruction cycle,
large number of function units in the execution core
are fed with instructions by a centrally located instruc-
tion fetch/decode logic. This logic in turn fetches a
long instruction word from a wide (512 bits wide cache
line in TMS320C6211 [18] and TriMedia [19]) instruc-
tion cache. Also, the interconnect between cache and
fetch/decode logic is wide and the interconnect between
fetch/decode and the execution core is not only wide but
also long. This kind of architecture does not scale well
in terms of power and performance with increasing num-
ber of function units. In fact, the power consumption of
some of the hardware structures in this hierarchy, like
the caches, are known to grow exponentially [16]. Also,
these are the main power consuming elements in the
instruction memory hierarchy. Every instruction cycle
there is switching in almost all the structures shown in
Figure 1. Even when some of the function units are not
computing anything, they are issued with NOPs, leading
to significant and unnecessary power consumption.

1.2 Program Behavior

It is observed from some of our media benchmarks that
significant amount of time is spent in small and tight
loop nests. In Table 1, 'a’ shows the percentage of exe-

14-1

L11-Cache

Instruction Fetch/Decoder

Execution Core (Multiple Function Units)

Figure 1: Centralized architecture in current instruction
memory hierarchy

Application Nature 'a
Cavity Detection Image Processing 70%
GSM Wireless Communication 67%

Epic Image Compression 75%
Mpeg2 Decoder Video Compression 50%

Table 1: % of execution time of loop nests in some rep-
resentative media applications

cution time spent in various loop nests within an appli-
cation.

A second observation is that the type of computation
in the loop nests vary from one loop to another. For
instance.

o Arithmetic and logic computations: Computations
performed over data elements of certain data struc-
tures like, variables and arrays.

e Address Calculations: Computations of the com-
plex index expressions of certain data structures,
specifically data arrays [14].

Within the loops that are engaged in initializing or load-
ing the data arrays or transferring the data from one ar-
ray to another, only address calculations are performed
and no computations are done on the data themselves.
However, within loops that perform computations on the
data elements, there are more arithmetic computations
than address calculations. Even if these loops have ad-
dress calculations these two kinds of computations could
be partially decoupled with some code transformations.

1

L1 I-Cache

LO I-Cache

1 1

4‘ Instruction Fetch/Decoder H Instruction Fetch/Decoder }7

1 '

Cluster 1

LO I-Cache

Cluster 2

Execution Core 1 Execution Core 2

Note: The LO I-Cache/loop cache, can be placed before or after the instruction decoc
Figure 2: Decentralized architecture for instruction
memory

Based on these observations, our proposal of clustered
instruction fetch and split loop caches are illustrated in
Figures 2 and 5. Also, a simple framework is provided for
analysis of energy requirements in different loop cache
schemes depending on the application.

The rest of the paper is organized as follows. In sec-
tion 2, a brief description of work available in the lit-
erature related to low power optimizations is provided,
followed by explanation of different loop cache schemes
along with the clustered architecture are in sections 3
and 4. Finally, results of initial simulations performed
over the loop cache schemes and a conclusion are pro-
vided in sections 5 and 6.

2 Related Work

In regard to the problem of reducing power in instruction
memory hierarchy, many researchers have attempted to
solve it with various amounts of success. The low power
techniques proposed by several authors vary from logic
and circuit level optimizations to architectural optimiza-
tions to pure software optimizations. An overview of the
former is presented in [1][15], and few examples of the
latter can be found in [5][13]. However, our approach
is orthogonal to these optimizations and hence the two
could be combined together to yield better results.

Based on similar observations on multimedia applica-
tions, as mentioned in the previous section, several au-
thors have proposed loop cache architectures [3][4][9][11].
However, a combined energy requirement analysis of all
these loop cache architectures has not been done.

In regard to clustered (decentralized) architectures,
there are many proposals for data path clustering by
various authors. A classic reference in this regard can

14-2

i

L1 I-Cache

LO I-cache

Instruction Fetch

-Cache-ctrl

Instruction Decode

Execution Pipeline

Register Write Back

1

‘ Execute

Figure 3: Loop cache architecture (LO-I-Cache placed
before instruction decode)

be found in [8]. However, very few proposals address
clustering in instruction control. One such proposal can
be found in [20], where a clustering scheme in the con-
text of superscalar processors is proposed. However, the
clustering is at the instruction control and does not ex-
tend the same to the instruction caches or any of the
memories.

3 Loop Cache Architecture

In our proposal a small cache/buffer is placed within
each cluster and close to the data path or the execution
core. This is a special cache to be used for programs with
high temporal and spatial locality, more specifically for
the loops. The cache could be placed either before or
after the instruction decode stage, as illustrated in Fig-
ures 3 and 4. The complexity of the cache controller and
the support for the control constructs depends on the
loop cache location. In deciding where to place the loop
cache, trade offs are involved. Hence, energy consump-
tion in each case has to analysed and compared. This
is a clear motivation for a energy requirement analysis
of different loop cache schemes within a common frame-
work.

3.1 Case (a): Loop cache placed before
instruction decoder

As mentioned before, the operation of the loop buffer is
triggered by software. An explicit way of triggering is
by having a special instruction, leon (loop cache ON).
When this instruction is fetched and decoded, a signal
LO-cache-ctrl is enabled, so that all further instructions
are fetched from the loop buffer. The signal basically

|

L1 I-Cache

Y

‘ Instruction Fetch

‘ Instruction Decode

!

LO I-cache

L0-Cache |-

Controller

Mux

|

‘ Execute

‘ Register Write Back ‘

Figure 4: Loop Cache Architecture (LO-I-Cache placed
after instruction decode)

selects the appropriate inputs of the multiplexer and en-
ables the loop cache controller.

Once the loop cache is initiated all further instruc-
tions are fetched from loop cache. The operation is very
similar to that of a L1 instruction cache. In case of a
hit, the requested instruction is passed onto the instruc-
tion decoder. In case of a miss, the controller passes on
the request to the level above and then updates the loop
buffer and simultaneously passes the instruction to the
instruction decoder. The loop buffer is direct mapped,
so the cache controller is very simple without any hard-
ware overhead. The miss handler passes the request to
L2 cache, instead of L1 in order to avoid unnecessary du-
plication of instructions in L1 cache. Also, no additional
penalty should paid in the performance which could be
incurred by transferring the instruction from L2 to L1
and then to the loop buffer.

The termination of the access to loop cache is done
explicitly using another instruction, leoff (loop cache
OFF). When this instruction is encountered, the instruc-
tion decoder disables the L0-Cache-ctrl, hence disabling
the access to loop buffer. Now, all further instruction re-
quests are fetched from L1 instruction cache. This kind
of operation of the loop cache is similar to the schemes
proposed in [4][11].

Some advantages of this scheme are, the support for all
the control constructs within the loop. No special loop
detection mechanism is need, so nested loops can also
be supported. The loop cache controller is quite simple.
Specific parts of the code can be explicitly placed in this
loop cache, and if the loop nest can be fitted into the
buffer, the misses can be restricted to only compulsory
misses. Due to high temporal and spatial locality of the
loops, the rest of the instruction memory hierarchy can

14-3

be powered down.

However, there are still a few shortcomings in this ba-
sic scheme. The buffer needs tag memory to identify the
misses. Also, during every instruction cycle the instruc-
tion decoder is active.

3.1.1 Energy analysis

Some insights on how energy is reduced can be obtained
by analysing the equation representing the energy con-
sumption in the instruction memory hierarchy.

Einst,nLo = C'Pp1 + C'Pp

Einst,to,.p = aCPro + (1 —a)CPr1 + CPp

where,

Einst,nro Energy consumption of instruction
window without loop cache

Einst,ro,p Energy consumption of instruction
window with loop cache
(loop cache, placed before Instruc-
tion Decoder)

Pry Power consumption of L1 I-Cache

Pro Power consumption of loop cache

o4 # of cycles taken to execute a pro-
gram P (without loop cache)

C # of cycles taken to execute a pro-
gram P (with loop cache)

a Fraction of time during which loop
cache is activated (0 - 1)
a= # of cycles whenloop cacheis ON

Total # of cycles
Pp Power consumption of the instruc-

tion decoder.

Now, it could be argued that, C’' ~ C. The reasoning
is that, instructions to loop cache are mapped such that
there is no conflict or capacity misses, but only com-
pulsory misses. When there is a compulsory miss, the
instruction is fetched from the L2 Cache or from another
level above. The miss latency of loop cache is slightly
larger than L1 I-Cache (but, has lower hit latency), and
total number of misses (which are compulsory) are small
compared to total number of hits. So, the increase in
execution cycles is very small. Hence for practical pur-
poses, C' ~ C (alternatively this implies that, there is
no loss in performance).

Effectively,

(1) Einst,nzo = C{Pr1 + Pp}
(2) Einst,ro,B = C{Pr1 — (Pr1 — Pro)a} + CPp

Also, Prg < Pr1, because a loop cache is much smaller
than a L1 I-Cache. So, the reduction in energy is de-
termined by a and the difference between Pr; and Prg

The upper bound for FEjnst .10, represents that en-
ergy consumption can be no more than E;,q nro. i.e,
when @ = 0 and the loop buffer is not used at all. The
lower bound represents the lowest possible energy con-
sumption for Ej,s 0. This basically indicates that, the
whole program contains nothing but a loop i.e, when a
= 1 and the whole program is completely mapped onto
the loop cache, so that the L1 I-Cache is never used.

Factors, Pro and a, in the above equations are not in-
dependent. If Prg is made larger (i.e, larger loop cache),
then some of the loops which were initially not mapped
onto the loop cache can now be mapped making a larger
(since they can fit into the loop cache without any ca-
pacity misses). But it is interesting to note that the
mazimum value of a for a given program, is a character-
istic of that program itself. It represents the amount of
loop nests inherent in that program. If the whole pro-
gram contains just loops, then a could be as high as 1,
achieving maximum energy reduction.

However, for a given Prq (fixed loop cache size) and
a given program, it is possible to conceive of software
transformations, to increase the value of a and try to
reach maximum value for that program. These transfor-
mations should aim at the loop nests which do not fit in
the loop cache, and transform those loop nests so that
they can be mapped into it. Some interesting software
transformations has been proposed in [4][12].

So in conclusion, if there are any loop nests in the pro-
gram, and if those loop nests are mapped onto a smaller
loop cache, then there is always a reduction in energy.
And the amount of reduction is determined by 'a’ and
by the difference between Pr; and Prg.

It is also interesting to note that a similar argument
holds for energy consumption of the interconnect be-
tween the L1 I-Cache and the instruction decoder (pro-
gram memory bus).

3.2 Case (b): Loop cache placed after
instruction decode

This loop cache organization is as shown in Figure 4.
Again the loop buffer operation is triggered by a special
instruction lcon in the software, as described in the pre-
vious section. When this instruction is encountered, the
buffer operation enters a FILL phase. Here, the decoded
instructions are stored simultaneously in the loop buffer
and also fed to the execution core. During this phase,
the counter in the buffer controller is loaded with the
exact number of iterations the loop will execute.

Once all the decoded instructions of the loop are
stored in the buffer, all further instructions are fed by
the buffer controller to the execution core; this is the
RUN phase. This phase terminates and returns to IDLE
phase,when the counter in the controller reaches zero.
In the IDLE phase, the loop buffer is not used, and all
the instructions are fed directly from the instruction de-

14-4

code stage. This part of the scheme is very similar to
the scheme presented in [2][3][9]. However, additional
considerations have been made in our proposal, namely:
local controller and several loop nest handling (support
for control constructs).

A significant advantage of this scheme is that the en-
ergy consumption per instruction can be very low dur-
ing the RUN phase. This is because, only the execution
core and the loop cache are active, while the rest of the
instruction memory hierarchy including the instruction
decoder can be powered down. Also, the buffer does
not need any tag memories since the operation is well
orchestrated and there will be no cache misses.

However, the reduction comes with certain trade-off in
the hardware complexity of the buffer controller. With
no support to any of the control constructs the controller
can be kept simple. For partial support for control con-
structs the complexity of the controller is quite high.

Since the buffered instructions are decoded, the buffer
size is larger compared to the case where buffer is placed
before instruction decoder. For certain sizes of the
buffers, the energy consumed in case (a) could be lower
than case (b), in spite of the tag array.

3.2.1 Energy analysis

Besides the reductions mentioned in the previous sec-
tion, there are additional reductions by powering down
the instruction decoder. To evaluate the energy reduc-
tion, the power consumed by instruction decoder should
also be included in the equations representing energy.

(3) Einst,ro,a = C{aPro+ (1 —a)Pr1 + (1—a)Pp}

Energy Consumption of instruction
window with a loop cache

(loop cache, placed after Instruction
Decoder)

Einst,LO,A

As it can be seen from this equation, further reduction
in energy can be obtained than in case (a), Eq (2). The
reduction however depends on how small P;q is com-
pared to Pr; and how large a is. It is important to note
that Pro represents not only the power consumption in
the loop cache but also includes the power consumption
of the associated controller. In order to obtain signif-
icant energy reduction, the power overhead due to the
controller should also be kept as low as possible.

4 Clustered Fetch and Split Loop
Cache Architecture

The architecture of a decentralized instruction memory
hierarchy, which is the main point of our proposal is il-
lustrated in Figures 2 and 5, for two data path clusters.

L1 I-Cache

Instruction Fetch/Decoder ‘

LO I-Cache

Instruction Fetch/Decoder

LO I-Cache

LO I-Cache -

LO I-Cache
Controller
Controller

Cluster 1 Cluster 2

(Address Calculation Units)
ACUs

(Arithmetic and Logic Units)
ALUs

Note: The LO I-Cache/loop cache, can be placed before or after the instruction decoc
Figure 5: Decentralized architecture for instruction
memory

Application-specific units with similar functionality are
grouped together to form clusters. In the figure illus-
trated, one of the cluster could be arithmetic calculation
unit and another cluster could be an address calculation
unit [14].

Each data path cluster has an instruction decoder and
a loop cache. The buffer could be placed either before
or after the instruction decoder, based on the trade offs
in the controller complexity and the amount of control
construct support needed. This scheme can be extended
to multiple clusters as well.

When the loop caches are not in use, the instruction
fetch mechanism of the clusters work synchronously, and
are tightly coupled with each other. It works as if there
was only one fetch mechanism. This is in fact the case
with current VLIW architectures with instruction level
parallelism. The instruction to a function unit is fetched
and issued in parallel with instructions for the other
function units. However, the significant difference in op-
eration is when loop caches are enabled. The triggering
of the loop cache operation is done explicitly for each
cluster, as explained in the section 3. However, there
are two different cases for the combined buffer opera-
tion.

When the loop body contains instructions for
both clusters

Here, the instructions within the loop body specific to a
cluster are stored in the corresponding loop buffers. De-
pending on which of the earlier schemes case (a) or case
(b) is employed, the operation within each cluster will
be as described in section 3. While these two caches are
in operation, rest of the instruction memory hierarchy
can be powered down.

14-5

When the loop body contains instructions for one
of the clusters

Here, the instructions within the loop body are specific
to a cluster. So, only that cluster’s loop buffer is put
into operation. While this loop cache is in operation,
rest of the instruction memory hierarchy can be powered
down, including the other cluster’s loop cache. The data
path of the other cluster need not be issued with NOPs,
instead it could be powered down as well. This is one of
the major advantages. Also, the loop caches among the
clusters need not be of same size, they could be further
optimized to make them as small as possible.

4.1 Energy analysis

By combining the energy equations for each cluster the
energy consumption of the clustered loop buffers are,

(4) ClUStEinst,LO,B = C{Zi(aiPLOi+PDi)+(1_a)PL1}
for case (a) in section 3

(5) ClustEinss,r0,4 = C{>_;(aiProi+(1—a)Pp;)+(1—
a)Pr,} for case (b) in section 3.

where,

Energy consumption of instruction
window with clustered loop cache for
case (a)
Energy consumption of instruction
window with clustered loop cache for
case (b)

CZUStEinst,LO,B

ClustEinst,10,4

Pry Power consumption of L1 I-Cache
Pro; Power consumption of loop cache in
the i** cluster
a; Fraction of time during which loop

cache is activated (0 - 1) in the 7**

cluster

a: = # of cycles when it" loop cache is ON
t Total # of cycles
a Fraction of time during which any of

the loop cache is activated
Power consumption of the it in-
struction decoder

Pp;

The energy represented by the equations, namely (4)
and (5), are to be compared with the energy equations
for the non-clustered loop buffer architecture, namely
equations (2) and (3), respectively.

In the case where loop body with instructions for both
clusters (upper bound for energy consumption), the en-
ergy consumption of small instruction buffers (low Pro;),
combined with significant a; = a, and smaller inter-
connects, (not in the energy equations) lead to lower
CZUSth'nst,LO,B-

In the case where loop body with instructions for
one of the clusters (lower bound for energy consump-
tion), the energy consumption is much smaller than (4).

Application a aAcU | QALU
Cavity Detection | 0.35 | 0.21 0.15
GSM 0.60 | 0.44 0.27

Epic 0.73] 0.34 | 0.45
Mpeg2 Decoder | 0.47 | 0.42 | 0.10

Table 2: a and a; for each application

This is because, when one of the loop cache is in op-
eration the rest of the instruction memory hierarchy is
switched off including the loop cache and instruction de-
coder of the other cluster, which in turn means lower
ClustEinst,10,4-

The main idea of the split loop caches is that smaller
storage elements combined together have lower energy
consumption compared to one large storage element.
In employing this scheme, the long active interconnects
which are a potential bottleneck for both power and per-
formance can be avoided.

5 Experimental Results

All our initial simulations have been carried out using
the Simplescalar tool suite [7] and the Wattch power
estimator [6], which is integrated into the performance
simulator of the former. The tool suite was modified
to identify the new instructions namely, lcon and lcoff.
Also, the cache behavior in the performance simulator
was extended to incorporate the loop cache behavior as
described in section 3. The loop cache was modeled as
a small cache of 64 words (256 bits wide for centralized
and 128 bits for clustered) for the cases where it was
placed before the instruction decoder. In cases where
loop cache was placed after the instruction decoder, it
was modeled as a simple array (no tag memories) of 64
words. The benchmarks were compiled and simulated
using this tool suite. So, from our simulation runs it
was possible to obtain C, a, Pp, Pro, Pr1, a;, Pro; and
Pp;.

Within the benchmarks the loops were identified man-
ually and were hand mapped into the loop cache. With
such a mapping and for the above mentioned cache size,
'a’ that we could achieve is as shown in Table 2. For
the clustered cases, the loops were hand mapped to each
clusters, and 'al, that we achieved are as shown in Table
2. The normalized energy estimates from the simulations
are as shown in the Figure 6.

The different loop cache schemes that are compared
here are

1. No loop cache {as represented in eqn (1)}

2. Non-clustered fetch and single loop cache, placed
before instruction decoder {as represented in eqn

(2)}

14-6

case(1): No LO Cache

case(2): L0 Cache before Instruction Decode

case(3): LO Cache after Instruction Decode

case(4): Clustered LO Cache before Instruction Decode|
case(5): Clustered LO Cache after Instruction Decode

Energy normalized over each application

1 2 3 4
GSM EPIC Decoder MPEG2 Decoder

Cavity Detection
Figure 6: Comparison of energy consumptions in various
loop cache schemes

3. Non-clustered fetch and single loop cache, placed
after instruction decoder {as represented in eqn (3)}

4. Clustered fetch and split loop cache, placed before
instruction decoder {as represented in eqn (4)}

5. Clustered fetch and split loop cache, placed after
instruction decoder {as represented in eqn (5)}

The energy reductions from the figure indicate that, up
to 70% (and 60% on the average) of the energy con-
sumed in the instruction memory hierarchy can be re-
duced, by employing the loop cache schemes. The re-
sults on non-clustered loop cache schemes are close to
the results shown in reference [2].

The energy reductions in cases (3), (5) over cases (2),
(4) shows that, placing a loop cache after the instruction
decoder could reduce energy much more than placing the
loop cache before instruction decoder. However, the re-
ductions shown in the figure were obtained by assuming
that the loop nests were very regular and there was no
nested loops or other control constructs. Also, the con-
troller overhead which is present in cases (3) and (5) was
not modeled. If these were not the case, then the trade
offs in energy depending on the loop cache placement
would be visible.

The energy reductions in cases (4), (5) over cases (2),
(3) shows that, additional energy reduction of about 10%
on the average can be achieved by clustering. This shows
that clustered architecture is indeed more power efficient
than the non-clustered architecture. However, it is im-
portant to note that the interconnect (Loop cache to
Instruction decoder and instruction decoder to function
units) energy was not modeled. If those figures were in-
cluded, the reduction in energy could have been much
more significant.

6 Conclusions and Future work

This paper presented a clustered fetch and split loop
cache architecture along with an energy framework to
analyze the energy requirements of different loop cache
schemes for long instruction word processors based on
the application behavior. This proposal aims at reduc-
ing the energy consumption in instruction memory hi-
erarchy and associated control. The architecture is not
only low energy inherently, but it is also scalable. Our
initial experiments show that up to 70% reduction in
energy could be achieved in instruction memory hierar-
chy. The loop cache techniques are orthogonal to the
standard circuit or gate level techniques that are tra-
ditionally used by designers to reduce energy and can
therefore be used to further reduce energy consumption
without impairing performance.

Our future work is to extend a VLIW compiler to sup-
port the clustered fetch and split loop cache architecture.
Here, instead of hand mapping the loops into the loop
cache, the responsibility is handed over to the compiler.
The granularity of the code which are placed in the loop
cache can in principle be reduced to basic blocks as well
and the current compiler can readily support this. Sec-
ond aspect is to exploit the energy framework in the con-
text of automatic loop cache architecture exploration for
multimedia applications.

References

[1] B. Ackland and C. Nicol “High Performance DSPs-
What’s Hot and What’s Not?”, ISLPED 1998.

[2] T. Anderson and S. Agarwala, “Effective Hardware-
Based Two-Way Loop Cache for High Performance
Low Power Processors”, International Conference
on Computer Design 2000.

[3] R. S. Bajwa, M. Hiraki, et al, “Instruction Buffering
to Reduce Powr in Processors for Signal Process-
ing”, IEEE Transactions on VLSI systems, vol 5, no
4, Dec 1997.

[4] N. Bellas, I. Hajj, C. Polychronopoulos and G. Sta-
moulis, “Architecture and Compiler Support for En-
ergy Reduction in the Memory Hierarchy of High
Performance Microprocessors”, ISLPED 1998.

[5] L. Benini, et al, “Selective Instruction Compression
for Memory Energy Reduction in Embedded Sys-
tems”, ISLPED 1999.

[6] D. Brooks, V. Tiwari and M. Martonosi, “Wattch:
A Framework for Architectural-Level Power Analy-
sis and Optimizations”, 27th International Sympo-
sium on Computer Architecture, June 2000.

14-7

[7] D. Burger and T. Austin, “The Simplescalar toolset,
version 2.0 Technical Report”, University of Wis-
consin Madison, 1997.

[8] R. Colwell, et al, “A VLIW architecture for a trace
scheduling compiler”, IEEE Transactions on Com-
puters”, 37(8):967-979, Aug 1988.

[9] M. Hiraki, R. S. Bajwa, et al, “Stage-Skip Pipeline:
A low Power Processor Architecture Using a De-
coded Instruction Buffer”, ISLPED 1996.

[10] M. F. Jacome, G. de Veciana, “Design Challenges
for New Application-Specific Processors”, IEEE De-
sign & Test of Computers, April-June 2000.

[11] L. H. Lee, W. Moyer, J. Arends, “Instruction Fetch
Energy Reduction Using Loop Caches For Applica-
tions with Small Tight Loops”, ISLPED Aug 1999.

[12] N. Liveris, N. D. Zervas, C. E. Goutis, "A Code
Transformation-based Methodology for Improving
I-Cache Performance", submitted to ICECS, Malta,
September 2001

[13] M. Mehendale, et al “Extensions to Programmable
DSP architectures for Reduced Power Dissipation”,
IEEE VLSI design Conference, 1997.

[14] M. Miranda, F. Catthoor, M. Janssen and H. De
Man, “High-level Address Optimisation and Synthe-
sis Techniques for Data-transfer Intensive Applica-
tions”, IEEE Trans. on VLSI Systems, Vol.6 No.4,
pp- 667-676, December 1998.

[15] L. Nachtergaele, V. Tiwari and N. Dutt, “Sys-
tem and Architecture-Level Power Reduction of
Microprocessor-based Communication and Multi-
media Applications”, ICCAD 2000.

[16] W.T. Shiue and Chaitali Chakrabarti, "Memory ex-
ploration for low power, embedded systems," DAC,
pp- 140-145, June 1999.

[17] Texas Instruments Inc, Technical report
“TMS320C6000 Power Consumption Summary®,
http://www.ti.com

[18] Texas Instruments Inc, Technical re-
port,“TMS320C6211 Cache Analysis”,
http://www.ti.com

[19] TriMedia Technologies Inc, “Trimedia32 CPU
Handbook “, http://www.trimedia.com

[20] V. Zyuban and P. Kogge, “Optimization of High-
Performance Superscalar Architecture for Energy
Efficiency”, ISLPED’ 2000.

14-8

