Buffered tiling for sequences of loop nests

Youcef BOUCHEBABA and Fabien COELHO
CRI - ENSMP 35 rue Saint-Honoré
77305 Fontainebleau Cedex, France

email:{boucheba, coelho}@cri.ensmp.fr

Abstract

Usually tiling is applied to one loop nest at a time.
In this paper we apply tiling and fusion simultane-
ously to a sequence of parallel nested loops in order
to minimize data movements and energy consumption
and/or to maximize the speed of execution. Each of
these nests uses as input a stencil of data computed
in a previous nest. After fusion and tiling, we guaran-
tee that data necessary to the execution of an itera-
tion has been already computed by the previous iter-
ations by delaying the computation of consumer nest.
We take into account the relation among the various
stencils, the added delays and the tiling parameters
and we give a solution for a class of tiling. To store
only the live data elements, we compute the surface
of these data for every array and during the code gen-
eration we replace this array by a buffer whose size is
equal to the surface of live data. We measured cache
misses for the transformed versions of the example
program.

Keywords: tiling, loop fusion, program transfor-
mations, buffer allocation, energy consumption .

1 Introduction

The objective of this work is to minimize the electri-
cal energy used during the execution of signal pro-
cessing applications which are a sequence of nested
loops. This energy is mostly used to data transfers
among various levels of the memory hierarchy [3]. Our
transformations aim at improving data locality so as
to switch costly transfers from the main memory to
cheaper cache or register memory accesses. To min-
imize these transfers, we transform these programs
by using tiling [10, 4, 11, 14, 15, 13, 5], loop fusion
[16, 7, 8, 13, 6, 9] and unimodular transformations
[2, 1, 15, 12]. A lot of work on loop transformations
has been done but most of it is only dedicated to code
with a single loop nest. For codes with sequence of
nested loops some authors suggest to merge these var-
ious nests and then to apply the tiling to the merged
nest. Irigoin and Triolet [4] have modeled the tiling by

13-1

a matrix H € Q™" and they gave a sufficient condi-
tion for the application of this tiling. Later, Xue [14]
has suggested to use the tiling as a loops transforma-
tion and given the necessary and sufficient condition
to its application. In our approach we combine Xue
[14]’s modeling with the various techniques of loops
fusion. The input programs are sequences of nested
loops. Each of these nests uses a stencil of data el-
ements produced in the previous nest. After tiling,
we have to guarantee that all necessary data for the
computation of given iteration has already been com-
puted by previous iterations. For this purpose, we
add a delay [8] to each nest. Instead of finding the
legal condition of tiling according to the dependences
of the initial code, we determine the delays which we
have to add to the various nests, so our tiling is valid.
Our tiling is represented by two matrices: (1) a ma-
trix of hierarchical tiling which gives the various co-
efficients of tiles and (2) a permutation matrix which
allows to exchange several loops and so as to specify
the organization of tiles.

To better understand the problem, we consider the
code in Figure 1, and apply successively a fusion, a
fusion with buffer allocation, tiling and tiling with
buffer allocation.

do (i=1, N;)
do (j=1,
AL, j)
enddo
enddo
do (1=2, N; —1)
do (j =2, Nj*l)
A2(i, §) = AL(i—1, j)+ AL, j—1)+
AL(i,)+ A1G, j+1)+ALG+1, 5)

enddo
enddo

Figure 1: Sequence of loop nests

1.1 Fusion

To merge the two nests of our example, we must en-
sure that all elements of array A; necessary to the
computation of an element A, (i, j) at iteration (i, j)!

in the merged nest, have been already computed by
previous iterations. To satisfy this condition we shift
the computation of each element A; (i, j) with a delay

d = (1, 0)*. The merged nest is:
do (i =0, N; —1)
do (=1, Ny)
Al(i+1, §) = o
if (i>2) and (2<j< N; —1)
A2(i, j) = AL(i — 1, j)+ AL(3, j— 1)+
AL, J)+ Al(E, j+1)+AlGE+1, j)
enddo
enddo
Figure 2: Nest after loop fusion
1.2 Fusion with buffer allocation

To keep in memory only the live data and to avoid
loading several times the same data, we replace the
array A; by a circular buffer B;. The size of this
buffer will be equal to the surface of live data of the
array A; which is noted by S. To compute this sur-
face, we consider an iteration 7 of the merged nest.
At thls iteration, we use 5 data which are produced
by it =i—(2, 0, i =i— (1, 1), i3 =i — (1, O)t,
is =1 — (1, =1)t and i5 = i — (0, 0)!. In section 3,
we show that memory surface is equal to a number
of iterations between 7 and the oldest live production
(i1). Consequently S = 2xN;+1. The code generated
with buffer is shown in figure 3.

do (=0, N; —1)

do (j=1, Nj)
Bi((t*Nj+j—1) mod S)=...
if (1>2) and (2<j< N; —1)

A2(i, j)=B1(((i—2)*N; +j—1) modS)
+ Bl(((z—l)*Nj+j—2) l’nOdS)
+ B1(((t —1)* N; + j — 1) mod S)
+ Bi(((s — 1) * N; + j) mod S)
+ B1((i* N; +j —1) mod S)
enddo
enddo

Figure 3: Nest with buffer allocation

1.3 Tiling
The tiling for Exzemple 1 is specified by two matrices:
0
1

0
4)and'P—

S =
O = OO
= o oo

oo = O

1
0
0
0
The matrix A transforms every point i= (z J)t in

a point i = (i1, is, j1, jo)t € Z* with ¢ !
The matrix P transforms every point i

e z*

13-2

]

point I = (I, Iy, ls, lg)t with [=P . i'. At each
iteration 7 of the second nest in the initial code we
compute the element A, (i, j) according to the stencil
of data from the array A; produced in the previous
nest. After tiling, we obtain a new single loop nest
(see Figure 4). The body of this nest is constituted
by two statements (4;() = ... and As() = ...) and
its iteration vector is represented by I. To apply this
tiling we have to assure that all the elements of array
Aj necessary for the computation of an element of the
array A, at iteration [are already computed by the
previous iterations. To satisfy this condition we shift
the computation of the statement (A4;(7,j) = ...) in
the initial code with a delay d = (dy, do)t = (1, 1)t.
The tiled code has the following form:

do (ll =0, Nq;/4 - 1)
do (l2 =0, Nj/4-1)
do (I3 =0, 3)
do (I4 =0, 3)

A1(4ly +13+1, 4+l +1) =

if (4l +13>2) and (412 + 14 > 2)

Az(4h +13, 42 +14) = A1(4l +13 — 1, 42 +14)
+A1 (4l + 13, 42414 —1)
+ A1(4ly +13, 412 +14)
+ Ai(4ly 13, 4la+1s+1)
+ A1(4l + 13+ 1, 42 +14)

enddo
enddo
enddo
enddo

Figure 4: Tiled code

We assume N; mod 4 =0 and N; mod 4 = 0.

1.4 Tiling with buffer allocation

To keep in memory only the live data and to avoid
loading several times the same piece of data, we pro-
pose two methods to replace the array A; by buffers:
circular buffer and three buffer.

1.4.1 Circular buffer

We replace array A; by a circular buffer B;. The size
of this buffer is equal to the number of iterations be-
tween the oldest live production and a given iteration
I of the tiled nest. As shown on Figure 5, the mem-
ory surface depends of the position of iteration [in
the tile.

In the section 4.4.1, we show that the surface of
live data in this case is a parameterized linear prob-
lem.

1.4.2 Three buffers solution

Some elements stored in the circular buffer are not
live (see Figure 5). We use 3 buffers (see Figure 6):

dead elementsdata

14 g
e

The oldest live elements

Figure 5: Circular buffer

. Buffer B; contains the live elements in the same
tile and it is managed as the circular buffer for
the fusion (Section 3.1).

Buffer Bs contains the data produced in a tile
and used in the following tile.

Buffer B3 contains the data produced by a col-
umn of tiles (I; = b) and which will be consumed
by the following column (I; = b+ 1).

i Bs

6 o of[elie o o olfo o o o
i e |o -i- o o -i #Bl
! e|e o0 o o o o
i oo li o o o li ° li

i °o |0 -i. o o -i- e o -i
i ° |o -i- o o -i- o o -i
i e |o .i- e o -i- [N) -i
.......ﬁ. B>
! © o oo 0 o o/0c 0o o o

° |o -3- o o -3- o o .ii
N BT L ‘

Figure 6: Three buffers

1.5 Overview

In this example we described briefly the various trans-
formations applied to our code. We describe in more
detail these transformations in the rest of paper which
is organized as follows. In Section 2 we describe the
input code. Section 3 and Section 4 present respec-
tively loop fusion and tiling. Experimental results are
discussed in Section 5. Conclusions are given in the
last section.

13-3

2 Input code

The input code is assumed to be a sequence of nested
loops of depth two. Each of these nests uses a stencil

of elements represented by RF = {of, o¥,...., 0% }.
do ;1 € D,y

A1(f1) = Ao(1 + 1) ® ... ® Ao(i1 + 17,1”1)

enddo

do ’-l"k € Dy

Ap(in) = Ap—1(ie + 77) @ oo ® Ap—1(in + Ufnk)

enddo

do ;n € D,

An(in) = An—1(in + 7)) ® .. ® An—1(in + T,)

enddo

Figure 7: A sequence of nested loops

Domain Dy associated to the array Ag is defined
by user. The domains Dg—;1.. ,, are derived in the
following way:

Dy = {Zk |V17€ RF: Zk+17€ Dk—l}-

We suppose that vectors of the various stencils are
ordered in the following way:

Vk:T 20 <. 20

Ump

3 Loop fusion

Let Timey, be the translation associated to nest k and
defined in the following way: .
Timey, : D* — 72 5o that Zk — Q= 7_:']9 + dy,
The fusion of all nests is legal, if and only if, each
translation Time; meets this condition:
(ka, Vzk+1 , AV € Rk'ij : Zk = ;k+1 +d
= Tlmek(lk) < Timek+1 (ik+1)) (1)

(1) @szk;_fk+1 ,dv € RkL . ;k = Zk+1 + U
=7 < —dp + dk+1) (2)

do 7 € Diter
51:C1(DAL1(G —d1) = Ao(i — d1 + 1) ® ... ® Ao(i — d1 + T,)

Sk : Ck(;)Ak(;— (i‘k) = Ak—l(;— Jk + ’l‘)‘f) ®...Q Ak—l(?— ti‘k + ’l'}'.km’c)

Sn: Co(@DAn(@—dp) = An1(T—dn +77) ® . ® Anc1 (i — d + 72,)
enddo

Figure 8: Merged nest

The domain Dj;, is the union of the translations
of domains Dy—; ., by vectors cszl,,n :
Diter = U, (DL), with D, = {i = ix+dy, | i, € Dy}.
This domain is not necessarily convex. If not, we
use its convex hull to generate the code.

As instruction S}, is not executed at each iteration
of domain D, we guard it by condition

Cy(@) = if (i € D).

If we choose the fr_g,me of the last nest as an axis
of the merged nest (d, = (0, 0)!), the condition of
legality of the fusion given in (2) will be equivalent
to: —dj, > —djp1 + 35 (1<k<n-—1)

Me+1 °

3.1 Fusion with buffer allocation

To save memory space, we replace the arrays Aj,
A,,..and A,,_; by circular buffers B;, Bs,..and B,, .

3.1.1 Live data

Let be D} = {i [Op <7 < (Npi + 1, Nyj + 1)t —
6k}. The surface memory Mp(D corresponding to
an iteration i = (i, j) € Dj_ —2., is the number of
elements of the array Ay which were defined before
i and which are not yet fully used:

M;() | £ ((3)] with

Ep(i) = {11 eDk 1|31)€R’“ andﬂzgeD
ﬁ—dk 1 —zz—dk+v and 7 <z<zg}

At iteration i, to compute Ak(z - dk), we use
my data of array Ag_; produced respectively by i1,
i and ka such as
ig=1—(dy —dj_1 —

7y) (g =1,m)

The oldest of these productions is 1?1. Conse-
quently the surface My (i) is bounded by the number
of iterations in Dj_, between i1 and 7. This upper
boundary is given by: L

Supk = (Nkaj, 1)t . (dk —dy_1 — '17{9) +1

3.1.2 Code generation

Let ék be the origin of the domain Dj, in the frame of
the fusioned nest and Bjy—1,,—1 the buffers associated
to the various arrays Ag—1,n—1. Sup;,, represents an
upper bound number of live data of array A;. Conse-
quently the size of the buffer By, can safely be Sup; ;.
For each buffer, an access function Fj is defined:

Fy : D}, — N so that i —s F},(7) with

1. Fy(O) =

0 sinon

2. Fj(succ()) = {
To satisfy these two_conditions, it is sufficient to
choose F (i) = ((i — Ok)-(Nk,;, 1)) mod Sup,,.

Let’s consider statement Sy of the merged code
in Figure 8. At iteration i, we compute the ele-
ment Ay (7 — di) according to my elements of array

Fi(@) + 1if (Fi (@) # Supgyy — 1)

13-4

A1 produced respectively by 1?1, &,...;mk. The el-
ement Ay (i — dy,) is stored in the buffer By, at posi-
tion Fi(7). The elements of the array A_; are al-
ready stored in the buffer By,_; at positions F_ 1(51)
kal(’z‘g),..,kal(;mk) (lq = Z—(dk—dk 1—0)) Thus
the statement Sy will be replaced by:

Ci (1) B (Fi (7)) = Be-1(Fi-1(i1)) ® .. ® Bi—1 (Fi—1(imy.)

4 Tiling

In this paper, we are interested only at the data live
at the cache level, thus our tiling is a one level tiling.

4.1 Matrix A
Matrix A has the following shape

(i)

This matrix allows us to transform every p01nt
(i, j)* € Z? (initial domam_) in a point i =
i1, i2, j1, j2)t € Z4, with i = A.i'.

1 0
0 a2,3

0
1

ai,1
0

1, =
(i
4.2 Matrix P

Matrix P is a permutation matrix which allows to
transform every point 7' = (i1, 42, j1, j2)! € Z%,in a
point I'= (Iy, Iy, s, 13)t € Z*, with [= P.i.

To scan tile elements in a contiguous way, it is nec-
essary that the matrix P meets two additional condi-

tions:
e Ya,b : (,Pa,1 =Ppa2 = 1)=>a<b (3)
e Ya,b : (’Pa73 =Ppa = 1)=>a<b (4)

4.3 Tiling as loop transformation

The tiling defined by matrices A and P is represented

by transformation w:

w: ZQ_’—) Z4

i— =P (|—a1ZTJ7Z mod a1, |_a23J] mod az, 3) .
To preserve the data flow dependences, each do-

main Dy, is translated by a vector dp.

Theorem :
The tiling defined by matrices é and]f is legal iff:
Vk, Vi, Ym : w(i + 75 — dpyq +dp) < w(7)

If matrix P satisfies conditions (3) and (4), one
legal delay is:

—dy = —dk+1 + (max; Ulkf , max; vf;rl)

The choice of this delay make the merged nest
fully permutable. We knows if a loop nest is fully

permutable, we can apply it any tiling parallel at axis
[11]

In the following we note by D) = {; |5k <7<
(Nk,i +1, Ny j+ 1)t — Oy} the translation of domain
Dy, by vector cz;c

4.4 Tiling with buffer allocation

Let ;, i" and I be the iterations vectors associated re-

spectively to the initial code, to the code after the

application of matrix A and the code after the ap-

plication of matrix A and P. The relations between

these various vectors are given by i=A. f’, I=pi

and 7 = AP~1. [. In the following, we will assume
1000

that matrix P = The method is

O OO

0
1
0

OO =
= o O

valid for any permutation matrix P. The access func-
tions and the surface functions (Supy) are depend on

P.

4.4.1 Circular buffer

To compute element Ay (AP 11— dj,) at iteration [,
we use my, data of array Ay ; produced respectively
by iterations l_i, l_;, and l:nk such that:

AP71EI —dy 1 = AP U —dy + 175 (g =1,my)

The set of live elements data My (l) is bounded
by the number of iterations in w(Dj,_,) between the

oldest of these productions and I. The oldest of these
productions vary according to the position of the iter-
ation 7 = AP, in the tile. Let My ,(I) (g = 1,my)
be the number of iterations between I, and I-
Mk,q(l_j = (Nk_1,j.01,1, G1,1.02;3, Q2,3, l)t.(f— l:l) +1
In the generated code we replace every array Ay by
a buffer By. At any iteration [, buffer By should con-
tain all the live elements of array Ay. Consequently
the size of this buffer is bounded by:
Supk—H = max(Mk+1,q=1,mk+1 (l))
i= AP
i = APy + dpgy — djy — 7!
0<=1l;3=a11—1(¢g=1mp41)
0=1l44=az3—1(¢g=1mp41)
ieD k1
Code generation:
For each of these domains we define an access
function F}, in the following way:
Fy : w(D}) = N so that I — F(I) with

(C] =1, mk+1)

1. Fi(w(0k)) =0

{

-

2. Fy(succ(l))

0

sinon

Fie(l) + 1 if (Fi(I) # Supyyy —

1)

13-5

To satisfy these two conditions, it is sufficient to
choose
Fk(l_) = [(Nk‘j.al,l, a1,1.02,3, @23, 1)t.(f— w(ék))] mod
Supg 1

4.4.2 Three buffers solution

Every array Ay, is replaced by three buffers: By 1, B2
and Bk’3 .

1. Buffer By ; contains the alive data in the same
tile and it is managed as the circular buffer of
the fusion. The size of this buffer is given by :
Supiyrs = (azs, 1) . (dpg1 —dp — 5FT) + 1
and its access function is:

Fra(D) = (I3, l4)t.(az,3, 1)*) mod Supyy, 4

. Buffer By contains the data produced in a
given tile and used in the next one.
Let 17 = dpy1 — dp, — 77 [V ¢

k1 k1
dry1,2 —dg2 — Uq,; <dpt1,2 —di2 T

— g -
The size of this buffer is given by :

Supy ;5 =1 . (0, a1,1)" and its access function
is:

Fk,Z(l_S = ((ls, ls)t.(ma, 1)! — a3+ my).

Buffer By, 3 contains the data produced by a col-
umn of tiles (I; = b) and which will be consumed
by the following one (I; = b+ 1).

Let 17 = dj41 —dy —7" . The size of this buffer
is given by :
Supy,y3 = M . (Nij, 0)* and its access func-
tion is:

Fra(D) = (o, I3, l)'.(az3m1, azg, 1) =
a2,3-(a1,1 - m1)-

4.5 Extension

To simplify the presentation, the input code is as-
sumed to be a sequence of nested loops of depth two.
Our method is applicable for any nest depth.

5 Experimental Results

We used an UltraSparcl0 machine, which has 512 M
main memory, 2 M external cache (L2) and 16 K data
internal cache (L1). We measured cache misses for 1)
the initial code, 2) merged nest, 3) merged nest with
buffer allocation, 4) tiled code and 5) tiled code with
buffer allocation. Figure 9 shows that the various
transformations decrease considerably the number of
internal cache misses as compared to the initial code.
But these decreases are almost the same for the dif-
ferent transformations.

2e+08 T T =
Initial code

+

1.8e+08

Meged code with buffer allocation %

[]

1.6e+08

(Cache misses) * 2

Jr

Tiled code
1.4e+08

1.2e+08

+

1e+08

8e+07 Jr

6e+07

4e+07 Jr %
+
v X

2e+07

6

1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

Figure 9: Internal cache misses (L1)

On the other hand, Figure 10 shows that fusion
with buffer allocation and tiling with buffer allocation
give the best result for the external cache misses. We
can remark that the tiling and the fusion decrease
in the same way this misses on comparison with the
initial code.

1.4e+07 T T

7e+07
N*Nj

o
%T Initial code J’» +
E 1.2e+07 |
E Merged code with buffer allocation %
1407 |- Tiled code |] —+
>
8e+06 -
Jr
M
6e+06 -
Jr D N4
4e+06 - »
+
2e+06 - Jr @
=
i

ol 8

0

le+07 2e+07 3e+07 4e+07 5e+07 6e+07

Figure 10: External cache misses (L2)

N; and Nj in this two figures, are respectively the
upper bounds of loop i and loop j of code given in
example and we have assumed N; = N;.

6 Conclusion

There are many works on the application of tiling and
fusion to a sequence of nested loops. To our knowl-
edge, the application of these two transformations si-
multaneously has not been treated. We combine Xue
results [14] who modeled tiling for single loop nest

7e+07
Ni*Nj

13-6

by a loop transformation and contributions on fusion
[16, 7, 8, 13, 6]. Our approach combines tiling and
fusion with a necessary shift of the iterations of the
loops nests so as to ensure that used data has been
already produced by previous iterations.

We give a system of inequalities which take into
account the relation among the added delays, the var-
ious stencils, the two matrices .4 and P defining the
tiling. For this system of inequalities we give a solu-
tion for a class of tiling. We computed the surface of
the live data of various arrays for the merged and the
tiled codes. We replaced these arrays by a circular
buffers whose sizes equal to corresponding surface of
live data. Our tests show that the replacement of the
various arrays by a circular buffers decrease consider-
ably the number of external cache misses.

In our future work we shall study other techniques
for buffer allocations (multidimensional buffer) and
the second level of tiling (level for registers).

References

[1] U. Banerjee. Loop transformations for restructuring
compilers. Kluwer Academic Publishers, 93.

[2] D. Chesney; B. Cheng. Generalising the unimodular
approach program code transformation. Proceedings
1994 International Conference on Parallel and Dis-

tributed Systems, pages 398-404, 1994.

F. Cathoor et al. Custom memory management
methodology-exploration of memory organisation for
embedded multimedia system design. Kluwer Aca-
demic Publishers,ISBN 3-540-64105-X, 98.

F. Irigoin and R. Triolet. Super-node partitioning.
In Proc. 15th Annual ACM Symp. Principles of Pro-
gramming Languages., pages 319-329, 1988.

M. Kandemir, A. Choudhary, and J. Ramanujam.
I/O-conscious tiling for disk-resident data sets. Euro-
par, 1999.

T. SS. Abdelrahman M. Manjikian. Fusion of loops
for parallelism and locality. IEEE trans. on paral, 97.

[6]
[7] K.S. McKinley, S. Carr, and C-W. Tseng. Improving
data locality with loop transformations. ACM Trans.
on Programming Languages and Systems, 18(4):424—
453, 96.

W. Pugh and E. Rosser. Iteration space slicing for
locality. LCPC99, pages 165-184, 1999.

V. Sarkar. Automatic selection of high order
transformations in the ibm xl fortran compilers.
IBM-Journal-of-Research-and-Development, 41:233—
64, 1997.

M. Wolf, D. Maydan, and Ding-Kai-Chen. Com-
bining loop transformations considering caches
and scheduling. International-Journal-of-Parallel-
Programming, 26:479-503, 1998.

[10]

[11]

[12]

[13]
[14]

[15]

[16]

M. E. Wolf. Improving locality and parallelism in
nested loops. PhD thesis, University of stanford,
1992.

M. E. Wolf and M. S. Lam. A loop transformation
theory and an algorithm to maximize parallelism.
IEEE trans. on paral, 2, 91.

M. Wolfe. High performance compilers for parallel
computing. Addison- Wesley, 1996.

J. Xue. On tiling as a loop transformation. Parallel
Processing Letters, 1997.

J. Xue and ChuaHuang Huang. Reuse-driven tiling
for improiving data locality. Parallel programming,
98.

H. P. Zima and B. M. Chapman. Supercompilers for
parallel and vector computers. Addison- Wesley, 1,
1990.

13-7

