Constructive Timing Violation for Improving Energy Efficiency

Toshinori Sato!?

ltsujiro Arita!

! Department of Artificial Intelligence
% Center for Microelectronic Systems
Kyushu Institute of Technology, Japan
{tsato,arita}@ai.kyutech.ac.jp

Abstract

A novel technique to improve enerqy efficiency
i1s disclosed. It relies on a fault-tolerance mech-
anism for timing constraints based on speculative
execution technique. Since power reduces quadrat-
ically with supply voltage, supply voltage reduc-
tion can result in substantial power savings. How-
ever, it also causes larger gate delay, and thus
clock must be slow down in order not to violate
timing constraints of critical paths. If any fault-
tolerance mechanism is provided for timing faults,
it is not necessary to keep the constraints. From
these observations, we propose a fault-tolerance
technique for timing failures, which efficiently uti-
lizes the speculative execution mechanism and re-
duces power consumption. We call the technique
constructive timing violation. This paper evalu-
ates our proposal using a cycle-by-cycle simulator
and finds its efficiency on energy consumption.
Keywords: low power design, fault tolerance, tim-
ing constraints, branch prediction, speculative ex-
ecution

1 Introduction

Current trend of increasing popularity of
portable and mobile computer platforms such as
laptop and cell phone is a driving force to inves-
tigate high-performance and power-efficient mi-
croprocessors. For example, Java-2 MicroEdition
(J2ME) works on cell phones[7]. We can download
a game and play it on our cell phone. Travellers
guide and flight ticket reservation are available.

Furthermore, mobile banking and trading are also
provided. As computing power of mobile device
increases, its power consumption is also increas-
ing. The active power P, and gate delay ¢,4 of
a CMOS circuit are given by

Pactive = fCloadVd2d (1)
Vid

(Vag — Vin)® @

tpg X

where f is clock frequency, (.4 is load capaci-
tance, Vyq is supply voltage, and Vy, is threshold
voltage of the device. a is a factor depending upon
the carrier velocity saturation and is about 1.3-1.5
in advanced MOSFETs[4]. Based on Eq.(1), it is
easily found that power supply reduction is the
most effective way to lower power consumption.
However, Eq.(2) tells us that supply voltage reduc-
tion increases gate delay, resulting in slower clock
frequency. And thus, computing performance of
microprocessor is diminished.

It is possible not to degrade computing power
by maintaining clock frequency before and af-
ter supply voltage reduction. This causes tim-
ing faults, resulting in logic errors. However,
if any fault-tolerance mechanism is provided for
the faults, the logic errors can be avoided. In
other words, we propose to give up meeting tim-
ing constraints but to tolerate violations[10]. We
call this technique constructive timing violation
(CTV) and have already applied it for boosting
computing power. In this paper, we evaluate it on
the research area of low power design.

2 Low Power via Fault-Tolerance

Our proposal is based on a kind of parallelism,
that is space redundancy. An element of circuits
consists of a main part and checker parts. The
main part is responsible for computing power, but
it could suffer timing faults. The checker parts,
which are timing error free, support the main part
and revert processor state to a safe point where
a timing fault is detected. The main and checker
parts are equivalent but their clock frequencies are
different with each other. To the main part, we
provide clock frequency which is higher than that
decided by the critical path, since it is expected
that typical delay of the circuit is less than crit-
ical delay and that timing faults rarely occur[6].
On the other hand, since the checker parts are
used for detecting the timing faults, they work at
the frequency which meets the critical delay. This
design technique exploits the fact that the longest
path for an individual operation of a logic circuit
is generally much shorter than a critical path of
the circuit. Furthermore, it utilizes the fact that
input signals which decide the critical path are
limited to a few variations. Considering the char-
acteristics of logic circuits and their critical paths,
the circuits could be designed as the longest path
decided by most of the operations for a function
is shorter than an expected cycle time.

The power reduction is achieved as follows. It
is assumed that the main part is error free when
the voltage of Vy, is supplied. Based on Eq.(2),
its maximum clock frequency fyq is as follows.

(Vdd _ ‘/th)l.3—1.5
Viad
For easy understanding, Eq.(3) is simplified as

(3)

Jad x

faa < Vaq

without loss of generality.
power consumption, we would like to supply the
voltage of Vi, lower than Vj;. Usually, the clock
frequency should be reduced to fr, determined by
Vi, but we keep it as fgq. The checker parts are
used for detecting the timing faults and thus they
work at the frequency fr with the supply voltage
Vi. That is, they are timing error free. In order

(4)

In order to reduce

Figure 1. ALU utilizing proposed technique

to maintain throughput, the checker parts are du-
plicated if necessary. If power reduction due to
the lower supply voltage is larger than increase of
power consumption caused by amount of paral-
lelism, the proposed technique can decrease power
consumption efficiently.

We explain our proposal using an example.
However, this is applicable to any combinational
logics. Figure 1 depicts an ALU which utilizes the
proposed technique. The shaded box shows ad-
ditional circuits for fault-tolerance. It is assumed
that currently the ALU executes at the clock fre-
quency fqq with the supply voltage Vyq, and it is
expected that the supply voltage is reduced to Vg,
say Vg %. First, the ALU is duplicated by
three times. One ALU, which we call main ALU,
works at fzq with Vp, and the remaining two ALUs,
which we call checker ALUs, work at f; = %
with Vp. Thus, the checker ALUs are free from
timing errors and are used for verifying the op-
eration of the main ALU. Please note that the
main ALU is essential for maintaining low latency
and that the checker ALUs only maintain through-
put. If there are serious dependences between in-
structions, high throughput can not be maintained

without the main ALU. Using this technique, the
ALU’s power consumption is reduced as follows.
The power in the main ALU is reduced from
f44CloadV2
f1aCroaaVEy 10 faqCloga(¥dt)? = 144leadidd - The
power in two checker ALUs is 2 * %Cload()=
2
JaC1oadVay Thus, total power consumption is re-
2

duced from fddCloadVde to M. While this
represents rather ideal case, the power reduction is
realistic and attractive when we use typical value
of 1.3-1.5 for a. The aim of this estimate is
demonstrating the potential of the CTV.

Please note again that this approach is appli-
cable not only to datapath such as ALU but also
to any combinational logics. One of the applica-
tions of this approach for control path is the logic
detecting data dependences between instructions.
This logic is on one of the critical paths in in-
order issue microprocessors. Assuming this logic
is asserted and is critical only when there are de-
pendences, the CTV mechanism can relief timing
constraints so as not to cause timing violations
only if there are not any dependences between in-
structions.

Clock signals distributed to the ALUs are shown
in Figure 2. Since the clock signals of the checker
ALUs are complementary with each other, they
work alternatively to verify the main ALU. Figure
2 explains how two consecutive operations start
and are verified. The verification is based on com-

Vag

2

paring two outputs from the main ALU and corre-
sponding one of the checker ALUs. If they do not
match, a timing fault is detected. In such cases,
any recovery action should be initiated. Since the
comparators should be fault free, they will work
at slower clock frequency fr. In order to revert
processor state to a safe point where the error is
detected, we propose to utilize the recovery mech-
anism used in modern microprocessors for specu-
lative execution. In other words, a timing fault of
an instruction is regarded as a misspeculated in-
struction. Thus, there are no hardware overhead
in the recovery mechanism.

We consider two mechanisms for the recovery
action. One uses the existing speculation recov-
ery mechanism for mispredicted branches, and the
other is based on the instruction reissue mecha-

7-3

start #1 verify #1
fdd/2
fdd
fdd/2
start #2 verify #2

Figure 2. Clock signals

nism for incorrect data speculation[8, 9], which
will be included in future microprocessors[5]. Note
that the correct value is provided by the checker
ALUs, and thus instruction retry is successful for
recovery from timing faults. That is, when a fault
is detected, it is enough to re-execute instructions
following the fault instruction. In the case that we
utilize the recovery mechanism for mispredicted
branches, when a timing fault is detected, the mi-
croprocessor flushes its pipeline and then restarts
at the corresponding instruction. All instructions
following the fault instruction are squashed and
thus penalty might be very large. We call this re-
covery mechanism instruction squashing. On the
other hand, using the instruction reissue, only in-
structions dependent upon the fault instruction
are selectively invalidated and re-executed. Hence,
low performance loss is expected. Explaining the
process of the instruction reissue is beyond the
scope of this paper and can be found in [9].

From these considerations, it is possible to de-
tect timing faults and to tolerate the violations.

3 Evaluation Methodology

We implemented a timing simulator using Sim-
pleScalar/Alpha tool set (ver.3.0a)[2]. The base-
line model is an out-of-order execution superscalar
processor based on the register update unit[11],

Table 1. Processor configuration

Fetch Width

Branch Predictor

Insn. Windows
Issue Width
Commit Width
Functional Units
Latency(total /issue)

Register Files
Insn. Cache

Data Cache

L2 Cache

4 instructions

512-set, 4-way set-associative BTB, 2048-entry bimodal predictor, updated
in commit stage, 8-entry return address stack, 3-cycle miss penalty
16-entry instruction queue, 8-entry load/store queue

4 instructions

4 instructions

4 iALU’s, 1 iMUL/DIV, 2 L.d/St’s, 4 fALU’s, 1 fMUL/DIV

iALU 1/1,iMUL 3/1,iDIV 20/19, Ld/St 2/1,

fADD 2/1, fMUL 4/1, DIV 12/12

32 32-bit fixed point registers, 32 32-bit floating point registers

16K direct-mapped, 32-byte blocks, 6-cycle miss penalty

16K 4-way set-associative, 32-byte blocks, 2-port, write-back, non-blocking
load, hit under miss, 6-cycle miss penalty

unified, 256K 4-way set-associative, 64-byte blocks, 48-cycle miss penalty

Table 2. Benchmark programs

program input set
164.gzip input.compressed
175.vpr net.in arch.in
176.gcc ccep.d
186.crafty | crafty.in
197.parser | test.in
252.eon chair
255.vortex | lendian.raw
256.bzip2 | input.random

and its configuration is summarized in Table 1.

The SPEC2000 CINT benchmark suite is used
for this study. Table 2 lists the benchmarks and
the input sets. We use the object files provided
by University of Michigan. For each program ex-
cept for 252. eon, 1 billion instructions are skipped
before actual simulation begin. FEach program is
executed to completion or for 100 million instruc-
tions. We do not count nop instructions.

4 Simulation Results

In this section, we present preliminary results
using the approach described in Section 2. Note

7-4

that the technique should be applied to every ele-
ment which probably violates timing constraints.
When we use one main part and two checker parts,
the clock frequencies f;, should satisfy the follow-
ing condition.

1
§fdd < fr < fad

Thus, we choose the clock frequency of %fdd for the
checker parts since efficiency of power reduction is
largest. We vary probability, that timing faults oc-
cur, randomly between 0 and 30% of operations,
and measure energy consumption. Note that in
practice there must be correlation between fault
probability and fr. Deciding the optimal tradeoff
point is remained for the future study. Figure 3
presents energy consumption when the instruction
squashing is used. It is calculated by multiplying
active power by execution cycles, and is normal-
ized by that of the baseline model. Even in the
case that a equals 2.0, the energy consumption is
substantially reduced if the fault probability is less
than approximately 15%. The rising energy con-
sumption is caused by increasing cycle time due
to recovery from timing errors. Since the instruc-
tion squashing involves long miss penalty for the
recovery, high fault probability diminishes power
efficiency considerably. This loss will be mitigated

Energy consumption

Energy consumption

Energy consumption

Energy consumption

T T T
alpha=2.0 -—
alpha=1.5 -+ -
@lpha=1.3 0~ -

- - -7
+ PR +

»---+--+--+--+--+--+

L - p-m--B-O-B--0--8--0-8--G-8--G-§--0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

%Fault probability

(i) 164.gzip

T T T
alpha=2.0 -—
alpha=1.5 -+ -
@lpha=1.3 0~ - !

P e A

e e i

R i

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

%Fault probability

(iii) 176.gcc

T T T
alpha=2.0 -—
alpha=1.5 -+ -
@lpha=1.3 0~ -

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
%Fault probability

(v) 197.parser

T T T
alpha=2.0 -—
alpha=1.5 -+ -
@lpha=1.3 0~ -

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
%Fault probability

(vii) 255.vortex

Figure 3. Energy consumption (Squash)

7-5

Energy consumption Energy consumption Energy consumption

Energy consumption

2 T T T
alpha=2.0 -e—
alpha=1.5 -+ -
@lpha=1.3 0~ -

10 12 14 16 18 20 22 24 26 28 30
%Fault probability

(ii) 175.vpr

2 T T T
alpha=2.0 -—
alpha=1.5 -+ -
@lpha=1.3 0~ -

10 12 14 16 18 20 22 24 26 28 30
%Fault probability

(iv) 186.crafty

2 T T T
alpha=2.0 -—
alpha=1.5 -+ -
@lpha=1.3 0~ -

8

10 12 14 16 18 20 22 24 26 28 30
%Fault probability

(vi) 252.eon

3 T T T
lalpha=2.0 o—
alpha=1.5 -+ -
lalpha=1.3 4O~

10 12 14 16 18 20 22 24 26 28 30
%Fault probability

(viii) 256.bzip2

[y
o

Energy consumption
o
w

[y
o

Energy consumption
o
w

[y
o

Energy consumption
o
w

[y
o

Energy consumption
o
w

(2]

8

10 12 14 16 18 20 22 24 26 28 30
Fault probability

(i) 164.gzip

(2]

8

10 12 14 16 18 20 22 24 26 28 30
Fault probability

(iii) 176.gcc

8

10 12 14 16 18 20 22 24 26 28 30
Fault probability

(v) 197.parser

6

8

10 12 14 16 18 20 22 24 26 28 30
Fault probability

(vii) 255.vortex

Energy consumption
o
w

[y
o

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Fault probability
(ii) 175.vpr
1.0 T T T T T T T T T T T T T T
c
k=]
a
£
>
%)
=
305 p
>
<y
[}
=
i}
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Fault probability
(iv) 186.crafty
1.0 T T T T T T T T T T T T T T
c
k=]
a
£
>
%)
=
80.5 ¢— R
>
<y
[}
=
i}
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Fault probability
(vi) 252.eon
1.0 T T T T T T T T T T T T T T
c
o
a
£
>
2
80.5 ¢—o—°— -
>
<y
[}
=
i}
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 4. Energy consumption (Reissue)

7-6

Fault probability

(viii) 256.bzip2

by small miss penalty of the instruction reissue. If
we use typical value of 1.3-1.5 for a, we can ob-
serve that the energy consumption is significantly
reduced even when the fault probability reaches
30%.

Figure 4 presents energy consumption when the
instruction reissue is used. Only the case where o
equals 2.0 is shown. As can be easily seen, the en-
ergy reduction of 50% is almost maintained across
the fault frequencies evaluated. While this tech-
nique requires slightly high-cost instruction reis-
sue mechanism, it will be implemented in future
microprocessors[5]. Thus, it is applicable for mo-
bile PCs to utilize this fault-tolerance technique
for reducing energy consumption.

5 Related Work

Kondo et al.[6] propose Variable Latency
Pipeline (VLP) structure for integer ALUs. Us-
ing properly two kinds of circuits according to
the longest path of the circuits for each opera-
tion, the effective execution latency can be al-
most one cycle. QOur proposal is strongly influ-
enced by the VLP, while they are not interested
in fault-tolerance nor power-efficiency at all. In
addition, our proposal is applicable not only to
ALUs but also to any combinational logics. Using
SPEC92 CINT benchmark suite, the usefulness of
the VLP is evaluated on a platform of an in-order
execution scalar processor, but it is not clear for
dynamically-scheduled superscalar processors. In
this paper, we made our evaluation on the 4-way
dynamically-scheduled superscalar processor.

Chandrakasan et al.[3] utilize a parallel archi-
tecture to reduce supply voltage with maintain-
ing throughput. Two identical circuits are used
in order to make each unit to work at half the
original frequency while the original throughput
is maintained. Since the speed requirement for
the circuit becomes half, the supply voltage can
be decreased. In this case, the amount of paral-
lelism can be increased to further reduce the total
power consumption. Qur proposal also utilize par-
allelism. However, we maintain not only through-
put but also latency of the applied element. Thus,
our proposal is efficient even for irregular applica-

tions which do not have much data parallelism.

DIVA[1] is an example of a fault-tolerant mi-
croprocessor based on space redundancy. A simple
checker processor is used for dynamically verifying
committed instructions. Any hardware faults are
corrected using recovery mechanism for incorrect
branch predictions. Hence, DIVA is a hardware-
based mechanism and transparent. However,
DIVA requires additional ports for register files
and caches in order for the checker processor to
share processor contexts. This increases design
complexity and circuit delay of its main processor.
In addition, power-efficiency is not considered.

6 Conclusion and Future Work

In this paper, we proposed a fault-tolerance
technique to improve energy efficiency of micro-
processors and named it constructive timing vio-
lation. The preliminary evaluation shows that the
proposed mechanism is energy-eflicient under the
condition that timing errors occur infrequently.

One of the future studies is modeling relation-
ship between clock frequency and fault probabil-
ity. The model is useful to understand the effec-
tiveness of the proposed technique in real world.
The other future direction is reducing hardware
overhead for introducing fault-tolerance. One of
the possible solutions is sharing circuits between
the main and checker parts by pipelining the el-
ement using transparent latches. This eliminates
the duplication of each element and thus reduces
hardware budget considerably.

Acknowledgement

This work is supported in part by a financial
gift from Toshiba Corporation.

References

[1] T.M.Austin, “DIVA: a reliable substrate for
deep submicron microarchitecture design,”
32nd International Symposium on Microar-
chitecture, 1999.

[2] D.Burger
pleScalar

and T.M.Austin, “The
tool set, version 2.0,”

Sim-

ACM

SIGARCH Computer Architecture News,
vol.25, no.3, 1997.

A.P. Chandrakasan and R.W. Brodersen,
“Minimizing power consumption in digital
CMOS circuits,” Proceedings of IEEE, vol.83,
no.4, 1995.

T.Hiramoto and M.Takamiya, “Low power
and low voltage MOSFETs with variable
threshold voltage controlled by back-bias,”
IEICE Transactions on Electronics, vol.E83-
C, no.2, 2000.

Intel Corporation, “Inside the NetBurst
micro-architecture of the Intel Pentium 4 pro-
cessor,” White paper, 2000.

Y.Kondo, N.kumi, K.Ueno, J.Mori, and
M.Hirano, “An early-completion-detecting
ALU for a 1GHz 64b datapath,” Interna-
tional Solid State Circuit Conference, 1997.

M.Levy, “Java to go: part 1,” Microprocessor
Report, vol.15, archive 2, 2001.

M.H.Lipasti, C.B.Wilkerson, and J.P.Shen,
“Value locality and load value prediction,”
International Conference on Architectural
Support for Programming Languages and
Operating Systems VII, 1996.

T.Sato, “Data dependence speculation us-
ing data address prediction and its enhance-
ment with instruction reissue,” 24th Euromi-
cro Conference, Workshop on Digital System
Design: Architectures, Methods and Tools,
1998.

T.Sato and I.Arita, “Give up meeting tim-
ing constraints, but tolerate violations,” Cool

Chips 1V, 2001.

G. S. Sohi, “Instruction issue logic for high-
performance, interruptible, multiple func-
tional unit, pipelined computers,” IEEE
Transactions on Computers, vol.39, no.3,
1990.

7-8

