

\$1000 Buys...

Integrated Circuit Performance Trends

The Original Moore's Law Proposal

A Decade of Agreement

Complexity's Influence

Increased integration

Partitioning the Improvement Rate

- Improving Integration: Components per chip
 - **▶** 50% Gain from Lithography
 - 25% Gain from Device and Circuit Innovation
 - 25% Gain from Increased Chip Size (manufacturability)
- Improving Performance:
 - Transistor Performance Improvement
 - Interconnect Density and Delay
 - Packaging and Cooling
 - Circuit-level and System-level Gains

Evolution of Memory Density

ITRS Lithography Roadmap

Industry-Wide Lithography Technology Acceleration

Dimensions in Lithography

Original Device

Scaled Device

SCALING:

Voltage: V/a Oxide: t_{ox}/a

Wire width: W/a

Gate width: La

Diffusion: x_d/a Substrate: a^*

N_A

Scaled Device

SCALING:

Voltage: V/a Oxide: t_{ox}/a

Wire width: W/a
Gate width: L/a

Diffusion: x_d/a Substrate: $a * N_A$

RESULTS:

Higher Density: ~a²

Higher Speed: ~a

Lower Power/ckt: ~1/a²

Power Density: ~Constant

runuamentai atomic iiiiit to scanng recipe

silicon bulk field effect transistor (FET)

Oxide thickness is approaching a few atomic layers

Limit of Oxide Scaling

High Performance CMOS Logic Trend

Relative CMOS Device Performance

New structures are needed to maintain device performance...

Relative Device Performance

MOSFET Device Structure (R)evolution

New devices/materials support accelerated growth rate

Better Performance Without Scaling

Novel Devices

V-Groove Transistors

Carbon Nanotubes

Organic Transistors

Quantum Computing

Molecular Devices

64-bit S/390 Microprocessor

- 47 Million transistors
- Copper interconnect -- 7 layers
- Size: 17.9 x 9.9 mm
- Single scalar, in-order execution
- Split L1 cache (256K I & D)
- **BTB 2K x 4, multiported**
- On chip compression unit
- > 1 GHz frequency on a 20-way system

Blue Pacific

- 3.9 trillion operations/sec
- Can simulate nuclear devices
- 15,000 X speed of average desktop
- 80,000 X memory of average desktop
- 75 terabytes of disk storage capacity

System Level Performance Improvement

Overall System Level Performance Improvement Will Come From Many Small Improvements

Microprocessor Size Trends

Microprocessor Performance Trends

Microprocessor Scaling Trends

Processor	486DX	Device Scaling	Moore's Law	Pentium 4
Date	04/10/89	2001	2001	04/23/01
Technology (um)	1	0.25	0.25	0.18
Vdd (V)	5	1.25	1.25	1.75
FPG	5	20	20	51
Frequency (MHz)	25	100	6400	1700
SpecInt95	0.5	2.0	128	71
# Transistors (M)	1.2	1.2	307	42
Chip Size (sq. mm)	165	10	660	216
Power (W)	4	0.25	66	64
Power Density (W/sq. cm)	2.5	2.5	10	29.5

Power Density: The Fundamental Problem

Source: Fred Pollack, Intel. New Microprocessor Challenges in the Coming Generations of CMOS Technologies, Micro32

Power

IT electrical power needs are projected to reach crisis proportions

- Server farm energy consumption is increasing exponentially
 - ...more Watts/sq. ft than semiconductor or automobile plants
 - ...energy needs constitute 60% of cost
- Interesting anecdotes
 - ► The "2,400 megawatt problem":
 - 27 farms proposed for South King County will require as much energy as Seattle (including Boeing)
 - Exodus considering building power plant near its Santa Clara facility
 - San Jose City Council approved 250 MW power plant for US DataPort server farm
 - and installation of 80 back-up diesel generators

Server Farm Heat Density Trend

Highest Communication: 28% AGR

Lowest Tape storage: 7%

Reprinted with permission of The Uptime Institute from a White Paper titled Heat Density Trends in Data Processing, Computer Systems, and Telecommunications Equipment Version 1.0.

^{*} Slower growth after 2005 due to improvement in semiconductor power consumption

Energy Dissipated per Logic Operation

Scaled Device

SCALING:

Voltage: V/a

Oxide: t_{ox}/a

Wire width: W/a

Gate width: L/a

Diffusion: x_d/a

Substrate: $a * N_A$

RESULTS:

Higher Density: ~a²

Higher Speed: ~a

Lower Power/ckt: $\sim 1/a^2$

Power Density: ~Constant

MOSFET Device Parameter Trends

Low Temperature CMOS

Subthreshold slope steepens as temperature is reduced

CMOS Performance Parameter Trends

- Cgate (fF/um)
- Inverter Delay (ps)
- A NFET Id-sat (A/m)
- Power Density (W/cm2)
- * CV/I Delay (a. u.)

Relative Power Density in Scaled CMOS

CMOS Power Density Trends

Microprocessor Power Draw vs. Frequency

We've been here before!

S/390 Mainframe CPU Performance

S/390: Comparison of Bipolar and CMOS

	ES9000 9X2	<u>S/390 G5</u>
Technology	Bipolar	CMOS
Total Chips	5000	29 (12 CPUs)
Total Parts	6659	92
Weight (lbs)	31.1 K	2.0 K
Power Req (KW)	153	5
Chips/processor	390	1
Maximum Memory (GB)	10	24
Space (sq ft)	672	52

S/390 Mainframe CPU Performance

Focus on massively parallel systems

- Use slower processors with much greater power efficiency
- Scale to desired performance with parallel systems
- Workload scaling efficiency must sustain power efficiency
- Physical distance must be small to keep communication power manageable.

Example: Processor A is slower than B by a factor S but more power efficient by E. Then MP System A at the same performance as MP System B has lower power by E/S.

Microprocessor Efficiencies

Parallel Performance Scaling Model

Power/Bandwidth by Interconnect Length

Supercomputer Peak Performance

ASCI White

Cellular Architecture

computational efficiency ~ 0.2 GFLOP/W

Example of a Cellular Node

Cellular Communication Networks

 65536 nodes interconnected with three integrated networks

Ethernet

- Incorporated into every node ASIC
- Disk I/O
- Host control, booting and diagnostics

- Virtual cut-through hardware routing to maximize efficiency
- 2.8 Gb/s on each of 12 node links (total 4.2 GB/s per node)
- Communication backbone
- 134 TB/s total torus interconnect bandwidth
- 1.4/2.8 TB/s bisectional bandwidth

- One-to-all or all-all broadcast functionality
- Arithmetic operations implemented in tree
- ~1.4 GB/s of bandwidth from any node to all other nodes
- Latency of tree less than 1usec
- ~90TB/s total binary tree bandwidth (64k machine)

Node Card and I/O Card Design

Compute cards

- **▶** 8 processors, 2 x 2 x 2 (x,y,z)
- ► 256 MB RAM each processor
- Redundant power supplies
- ► Fast Ethernet

I/O cards

- 4 processors (no torus)
- ► 512MB-1GB each processor
- Redundant Power Supplies
- Fast and 1Gb Ethernet

Rack Design

- 1024 compute nodes
 - **256 GB DRAM**
 - 2.8TF peak

One compute node

- 16 I/O nodes
 - > 8 GB DRAM
 - ▶ 16 Gb Ethernet

One I/O node

- ~15 KW, air cooled
 - √1+1 or 2+1 redundant power
 - √2+1 redundant fans

Building a Cellular System

The integration focus moves from circuit to processor

Massively parallel systems have great potential

Radical power reduction depends on efficient processors

(Hopefully Not) The End!

