EV8: The Post-Ultimate Alpha

Dr. Joel Emer
Intel Fellow
Intel Architecture Group
Intel Corporation

Alpha Microprocessor Overview

Goals

Leadership single stream performance

- Extra multistream performance with multithreading
 - Without major architectural changes
 - Without significant additional cost

EV8 Architecture Overview

- Aggressive instruction fetch unit
- 8-wide super-scalar execution unit
- 4-way simultaneous multithreading (SMT)
- Large on-chip L2 cache
- Direct RAMBUS interface
- On-chip router for system interconnect
 - for glueless, directory-based, ccNUMA
 - with up to 512-way multiprocessing

System Block Diagram

Instruction Issue

Reduced function unit utilization due to dependencies

Superscalar Issue

Superscalar leads to more performance, but lower utilization

Predicated Issue

Adds to function unit utilization, but results are thrown away

Chip Multiprocessor

Limited utilization when only running one thread

Fine Grained Multithreading

Intra-thread dependencies still limit performance

Simultaneous Multithreading

Maximum utilization of function units by independent operations

Basic Out-of-order Pipeline

SMT Pipeline

Architectural Abstraction

- 1 CPU with 4 Thread Processing Units (TPUs)
- Shared hardware resources

Key Design Principles

High throughput single stream design

Enhancements for SMT

Little's Law

Average Number of Tasks in Region (N)
Throughput (T) = ----Average Latency in Region (L)

Little's Law for Instruction Fetch

◆ L = fixed pipe length + average memory latency

♦ N = number of instructions fetched

Instruction Fetch Unit

- Wider fetch
 - Fetch more statically consecutive instructions
 - Limited by "trace" length
- Trace Cache
 - Build sequences of dynamically consecutive instructions
 - Significantly greater complexity
- Double fetch
 - Fetch two non-consecutive blocks of instructions

Instruction Fetch Unit

Instruction Fetch Characteristics

- ◆ Two 8-instruction fetches per cycle
- 16 branch predictions per cycle
- Jump target prediction
- Return address prediction
- Rate matching buffer of fetched instructions
- Collapse fetched instructions into groups of 8

Execution Unit Issue Queue Regs Regs

Execution Unit Characteristics

- Single issue queue
 - 8-wide
 - 112+ entries
- Register file
 - 512 registers
 - 16 read/8 write ports
- Function units
 - 8 integer ALUs
 - 4 floating ALUs
 - 4 memory operations (2 read/2 write)

Little's Law for Execution Unit

- ◆ L (min) = Number of cycles in pipe
- ◆ T (desired) = Number of desired instructions per cycle (8)

Little's Law for Execution Unit

Key Design Principles

High throughput single stream design

◆ Enhancements for SMT

Additions for SMT

- Replication required resources
 - Program counters
 - Register File (architectural space)
 - Register maps
 - ...
- Sharable resources
 - Register file (rename space)
 - Instruction queue
 - Branch predictor
 - First and second level caches
 - Translation buffers

.

Approaches

- Replicated resources used for...
 - all per TPU state (except register file)
 - some sharable resources where design is easier (*)
 - E.g., return stack predictor
- Shared resources used for...
 - register file (*)
 - all other sharable resources (*)
- * Policy may be needed to make priority decisions

Choosing Policy

Choosing policies

- ◆ FIFO trivial
- ◆ Round robin easy
- Proportional special case
- ◆ Icount-style fair

Icount Choosing Policy

Why Does Icount Make Sense?

Choosers

Choosers - Fetch

Choosers – Fetch

Choosers - Map

Choosers - Retire

Choosers – LD/ST numbers

Choosers – LD/ST numbers

Choosers – Miss/Store

Choosers

- Fetch Chooser Icount
- Map Chooser Icount
- LD/ST Number Chooser Proportional
- Retire Chooser Round Robin
- Load miss Chooser Round Robin
- Store Buffer Chooser FIFO

Area Cost of SMT Support

Multiprogrammed workload

Decomposed SPEC95 Applications

Multithreaded Applications

Acknowledgements

- Tryggve Fossum
 - Chuan-Hua Chang
 - George Chrysos
 - Steve Felix
 - Chris Gianos
 - Partha Kundu
 - Jud Leonard
 - Matt Mattina
 - Matt Reilly

