A Fresh Look At Low-Power Mobile Computing

Michael Franz
Department of Information and Computer Science
University of California, Irvine

Abstract We challenge the apparent consensus that
next-generation mobile devices must necessarily
provide resource-intensive capabilities such as Java
interpreters to support advanced applications.
Instead, we propose an architecture that exploits the
high “last mile” bandwidth in third generation
wireless networks to enable the largest part of such
applications to run inside a base station, effectively
reducing the mobile device to a dumb terminal. We
discuss some implications of this architecture, with
respect to hand-off, confidentiality while roaming in
potentially hostile networks, and the need for a
server-transparent segmentation of applications into
a computational and a user interface component.

1. Introduction

Latency and bandwidth continue to lag behind
demand, and this situation will continue even with
the availability of third generation mobile networks.
In future wireless networks, available bandwidth
between the mobile terminal and the base station
increases significantly, but this doesn’t solve the
problems of bandwidth contention further upstream
or those relating to latency, especially when dealing
with remote applications.

The traditional solution of overcoming these
problems has been to place more local intelligence at
the user’s site. The most successful approach to this
so far has been that of downloadable “applets” or
“mobile agents” that travel from a server to the user’s
terminal device and conduct most of their
computations locally, unhindered by bandwidth or
latency constraints.

Unfortunately, downloading and executing
mobile code requires considerable resources, both
computationally as well as storage wise, with an
immediate implication on power consumption. At
first sight, this might rule out mobile-code client
solutions targeted at low-cost low-power handheld
devices such as next generation mobile voice/data
terminals and networked embedded processors in
consumer products.

15-1

We propose a solution based on off-loading the
resource-intensive parts of the client program to the
mobile base station' or to an appropriate
computational device in the user’s personal sphere,
such as a “home base station” or a more capable
notebook/PDA computer carried on the user’s body
and connected via a technology such as Bluetooth. In
the most extreme case, the user’s mobile device then
only needs the functionality of a dumb terminal,
making use of a high available bandwidth between
the actual execution unit (XU) and the mobile station
(MS)—but the MS might also perform -critical
functions locally, perhaps utilizing reprogrammable
hardware. The original two-level client-server
architecture thereby becomes a three-level MS-XU-
server architecture.

A key characteristic of the proposed
architecture is that a remote server need not be aware
of the fact that the client is not actually running on
the mobile station. Further, the division of concerns
between MS and XU can be adjusted, potentially
even at run-time, without notifying the server of this
fact. Finally, local state is kept at the XU (albeit
possibly partially cached at the MS), increasing
overall robustness in the event of power failure of the
MS or intermittent communication breakdown.

The following sections describe the proposed
architecture in more detail and point to areas that
require more research. Among other facets, we
discuss the implications of handover and the resulting
need to transfer state between different XUs. Of
particular interest to service providers might be that
the provision of computational resources at the XU
constitutes a possible source of revenue, and that
control over such user state might tie users closer to
providers and thus reduce churn. We discuss the
issue of automated segmentation of functionality, by

'In a GSM system, the entity performing these
resource-intensive tasks would most probably be co-
located with the MSC (or rather, be part of the
Serving GPRS Support Node) while in cdma2000,
these functions would fit within the BSC node.

which a controller decides which parts of the client
program should be downloaded to the MS and which
parts should run at the XU. In case of a MS that
includes reconfigurable FPGA hardware, historical
usage profiles might be used to select an initial
configuration of the FPGA grid, but this could be
updated in real time (using dynamic recompilation)
under the remote control of an XU that constantly
models the execution of the reconfigurable hardware
in the MS. Lastly, we discuss the fact that certain
security applications such as banking might require
dedicated functionality (such as encryption) to be
downloaded to the reconfigurable hardware in order
to guarantee end-to-end functionality, and how this
might be modeled in our architecture.

2. Architecture

A common approach to masking the latency and
limited bandwidth of client-server applications has
been the addition of local processing power at the
client’s site (“fatter” clients). The spectacularly
successful Java platform is the current champion of
this paradigm. Java’s inventor, Sun Microsystems
Inc., has been trying to extend the reach of the Java
platform ever further down the performance spectrum
to embedded consumer devices such as PDAs, smart-
phones, or even household appliances, by introducing
a core (picoJava) for dedicated processors that can
execute Java bytecode directly on the silicon.
Processors based on the picoJava core require
far less external memory than alternate solutions
based on general-purpose processors for
interpretation (or even dynamic translation) of Java
bytecode. Unfortunately, however, picoJava’s

Server Internet

implementations are likely to be quite complex and
consequently relatively expensive and power-hungry.
Hence, cost and battery-life considerations reduce the
appeal of increasingly “smart” mobile terminals.

We propose an alternative architecture
(Figure 1) in which the client program is further
subdivided between an execution unit (XU) and a
mobile station (MS). For example, and this is our
main target scenario, the XU could be incorporated
into a mobile service provider’s infrastructure and the
MS could be a mobile terminal—but the XU might
also be a television set-top box (or network-
connected games console) and the MS a remote
control unit. The key characteristic of our model is
that there is a direct (i.e., very low latency)
connection between XU and MS, and that this
connection has sufficient bandwidth. Given these
parameters, the MS in the most extreme case could
then act simply as a “dumb terminal”.

In our model, the server is unaware of the fact
that the client is actually composed of two distinct
parts, XU and MS. To the server, the XU-MS pair
acts as an atomic entity that is physically located
wherever the MS happens to be (for location-aware
services) and that has at least the computational
resources of the XU (the MS may contribute to the
total). Hence, in the Java case, a JVM class file
would appear to be downloaded to the MS, but most
of it would actually be executed on the XU, with the
segmentation between the two either being hard-
coded into the libraries on the XU (simple case) or
dynamically decided and adjusted using just-in-time
code generation (a much more challenging case).

Client as seen by Server

—&T8~

base station mobile phone
set-top box remote control
<“Tow-high banawidth > medium-nigh banawiath >
high latency low latency

Figure 1: System Architecture

3. Handover and the Quantization of
Computational Resources

A cornerstone of our architecture is the provision of a
low-latency connection between the XU and the MS.
In the case of a MS that is physically moving, this
implies moving the state of the computation that is
running on the XU along with the MS to keep it
“close” and the latency low. While one might also
envisage a solution in which the computation remains
stationary on the initial XU and all traffic is routed
via that XU, perhaps using a fixed-bandwidth
reservation scheme, this would clearly be sub-
optimal; only true mobility of the computations
themselves will result in fully scalable performance.

Hence, it becomes necessary to transfer state
from one XU to another. This brings with it the
potential to have XUs in different organizational
domains seamlessly working together: For example,
while the user is physically at a home or office
location, execution services might be provided more
cheaply by a private server installed on those
premises. As a user enters a locality that offers such
a (cryptographically authenticated) execution
environment, the whole active state is transferred
away from the service provider and is eventually
restored there as the user leaves the locality; all of
this completely transparently to the user. Figure 2
shows some of the possible scenarios. Note that in
such a transfer from service provider to local context
and back, the service provider can actually cache the
local state, so that only the changes need to be
communicated as the MS re-enters the domain of the
service provider.

A third scenario depicted in Figure 2 is that of a user
carrying his or her own mobile context that is
sufficiently capable computationally to carry out the
functions required of an XU. This is not really all
that far-fetched. For example, the user may be
carrying a PDA or laptop in close proximity that is
sitting idle while the user is making a flight
reservation using his or her mobile phone. It might
make sense off-loading the computation to the local
device while the user is, for example, sitting on a
train for several hours. The problem here is that the
device hosting the local context may itself run out of
battery power or else may be shut off at any time; this
suggests that the signaling of the upload/download
actions would most probably have to be done by the
end-users themselves and that fault-tolerance
considerations need to be incorporated into the final
design.

This brings us to the issue of the actual transfer
of the local state, which requires all of the following:

1. The receiving XU must have sufficient resources
to be able to add this computation to its existing
workload.

2. The receiving XU must have the required
libraries available locally to support the ongoing
computation. Note that an XU that is underused
can prefetch libraries used at “neighboring”
MSCs in anticipation of future handovers.

3. There must be sufficient network resources to
enable the transfer of state information between

Execution Unit Scenario

network/provider-based

Network service provider additionally also supplies computational infrastructure,
probably for a fee. Handover requires continuous transfer of computational state
“staying close to the mobile station” in order to preserve latency characteristics.
Unlike voice calls, which are dropped when the current provider’s network is left, it
would be desirable to provide continuous handover of computational state even when
roaming across different service providers’ networks.

user’s mobile context

User carries an additional device such as a laptop or PDA that can provide
computational services to the MS and that is linked to the MS using some body-area
networking technology such as Bluetooth. Upload/Download of state both from/to
external service provider and/or home base station possible under user control; similar
to “synching” today’s PDAs.

home/office base
station

As user enters home or office, active computational state is transferred from network
provider’s computers to a local execution unit installed on private premises, relieving
the network provider of the obligation to host the computation and temporarily
suspending billing for these services.

Figure 2: Different Classes of Execution Units and Applicable Usage Scenarios

15-3

the two XUs within a useful time frame. But
note that the timing constraints for this sort of
handover are much less stringent than they are
for voice connections, and that they need not
even occur simultaneously with an ongoing
voice handover. In fact, if one allows for a
slight temporary increase of latency, one may
permit a nomadic user to move a certain
number of “hops” away from its current XU
and hand over the computation only when the
number of hops exceeds a certain threshold or
the user becomes stationary. This approach
may be particularly attractive when
complemented by the previously mentioned
idea of a “user-carried” XU that might be used,
e.g., on a longer high-speed train journey.

3.1 Standardization of Execution

Environment’s Parameters

We believe that a general adoption of our architecture
would most probably lead to a standardization of the
execution environment’s parameters, not just in terms
of the libraries available (as in Sun’s JavaOS project)
but in terms of quantifying actual processing and
memory resources in a standardized way independent
of an actual processor platform. Such standardization
not only aids in allocating resources when
transferring computations between XUs, but might
also be useful for billing purposes. For example, a
user might subscribe to a guaranteed minimum
workspace of 25kObjects and a minimum throughput
of 50kTicks per minute, with specified penalties for
going over those limits. A combination of paid-for-
resource allocation and dynamic resource control is
also an effective defense against denial of service
attacks.

In our initial approach to exploring these issues,
we are using the Pi calculus and the Pict
programming language [PT97] for systematically
modeling the connectivity, communication and
mobility (MS moving from one XU to another)
arising in our architecture.

3.2 A Commercial Vision: Impact on Billing,

Customer Loyalty and Churn

Most likely, the provision of computational services
could be turned into a significant source of revenue
for service providers. On one hand, off-loading the
computations into the network makes for extremely
cheap mobile devices that can be distributed without
a subsidy—"disposable” devices are entirely feasible.

15-4

On the other hand, it would enable a greater range of
services to be provided in the first place that might
otherwise bypass mobile service providers
completely. Furthermore, the available level of
network-based computation might turn into a key
service distinction between competing providers.

Of note is also that many of the envisioned
applications are of the “always on” kind, i.e. the
application programs never “quit”. These could be
structured in such a way that they increase customer
“stickiness”. For example, the user might have two
applications implementing an electronic organizer
and an MP3 jukebox, both of which are permanently
running on his MS, hosted by the actual service
provider. Although these are in reality downloadable
applications like any other, they could be marketed as
a basic service (i.e., not count towards the allocated
“clicks” and “object space”) and as far as the user is
concerned might just as well be built into the MS
itself. As a consequence of this marketing strategy,
the user will not choose a competing service from an
external source. But now, all user-defined
preferences and settings are “owned” by the network
service provider, reducing the users’ propensity of
changing providers.

4. Segmentation of Functionality:

The XU-MS Split

Client applications are jointly executed by the XU
and the MS, but creating the illusion to the server that
all of the processing happens at the geographic
location of the MS. This leads to the question how
functionality is divided between the XU and the MS.

In the most simple case, the MS would simply
be a dumb terminal. The XU would run a “virtual
terminal” that translates GUI commands coming
from the client application to remote-terminal
instructions for the MS. Since all interaction with
physical I/O devices in Java is via well-established
libraries, this would be very simple to accomplish in
the Java case. We also note that others have been
successful at building an architecture in which MS
Windows GUI commands are intercepted on a server
and relayed to a client residing within a web browser
[Citrix], enabling the remote execution of local
desktop software from anywhere on the web—this is
essentially the exact same architecture as our
proposed “dumb terminal” solution.

A much more challenging objective would be
to actually perform part of the processing on the MS
itself. For the purpose of minimizing power
consumption on the MS, one needs to include the

power used for communication in the overall cost
equation. Using a “dumb terminal” approach, the
mobile station is likely to be receiving much more
data than it needs to send, but there may still be
significant number of handshakes and other data
exchanges that might be reduced using local
processing on the MS. Note that the XU will be able
to model current and future power consumption of
the MS quite accurately as it gathers usage statistics
on a per-application or even per-user basis.

The task of partitioning the application between
a resource-constrained MS and a remote XU is not
unlike the task of partitioning an embedded system
(between slow but flexible software, and fast but
rigid hardware). There are also some similarities
with partitioning for parallel execution, particularly
considering the fact that some partitionings may
require more communication among the participants
than others. Hence, it is quite likely that ideas from
the embedded systems community and the
parallel/distributed systems community can be
adapted to this problem domain.

It is also important to note that the current
version of JVM-code is unlikely to survive as the
dominant mobile-code interchange format in the
longer-range future. As we have demonstrated in
previous research [FK97, ADFO1, ADRO1], there are
alternative formats not based on virtual machines that
provide much better performance than JVM does,
and more easily verifiable security. It is likely that
such future formats would include annotations that
would guide in the partitioning of functionality
between XU and MS. We are currently working on
mechanisms for integrating specific annotations
describing programmer-specified parallelism and
compiler-derived parallelism into a mobile code
format in a manner that is useful to a parallelizing
compiler back-end at the code recipient’s site.

4.1 Use of Field-Programmable Hardware in

the Mobile Station

The deployment of field-programmable hardware in
mobile stations then becomes an interesting
possibility. Ideally, the same analysis process that
partitions functionality between the XU and the MS
could be taken one step further, creating custom
hardware on-the-fly on the MS where this is most
beneficial. Such downloaded dedicated routines
might include encryption protocols, vocoders for
speech (input, output, and telephony), and visual-
object rendering (texture mapping etc.) capabilities
for gaming applications.

15-5

The availability of an appropriate (non-virtual-
machine) intermediate representation makes this task
considerably simpler. For example, at UCI we have
been experimenting with mobile-code representations
based on the condensed graph model [Mor96].
Condensed graphs express Availability-Driven,
Coercion-Driven and Control-Driven Computing in a
single unified model of computation and have
transformations that allow you to “turn up or down”
the amount of processing power required.
Essentially, this transforms the partitioning problem
from a speculative, data driven model using a
substantial amount resources to a lazy, demand
driven model that tries to minimize resource usage by
applying simple topological transformations.

The availability of such a model in the mobile-
code representation itself significantly reduces the
burden on the XU (or appropriate controller) for
computing such a model, and makes it possible to
even adjust these bindings on-the-fly in reaction to
changing user activities on the MS: based on a model
of what the MS is doing, the XU at regular intervals
sends it an updated FPGA configuration.

4.2 Special End-To-End Application

Requirements

Lastly, we observe that there are applications that
require special care in partitioning. For example,
communications with a banking application are
encrypted, with the assumption being that (1) the
client program is actually (atomically) executed at a
single terminal location and (2) that this terminal
location provides a trusted computing infrastructure,
i.e., the data path between the mobile client program
and the user (through the OS, web browser, etc.) is
not corrupted by an interposed malicious agent.

Obviously, condition (1) is violated in our
architecture, and indeed the data path between the
XU and the MS is potentially much longer and
subject to eavesdropping and corruption. Worse still,
when roaming in foreign networks, any potential
secret would be readily available to the foreign
entities running such networks simply by observing
the XU.

A solution to this problem lies in designing an
appropriate type system into the mobile-code
transportation scheme itself that can directly express
a notion of confidentiality and trust. The XU is then
under the obligation to partition the mobile client
program in such a manner that the trusted parts reside
on the MS. This property can be verified using
proof-carrying authentication protocols [AF99]
incorporating the code being downloaded itself

—after download, the MS generates a response sent
back to the server that vouches for the fact that the
trusted subset of the computation is now running on a
trusted host.

S.

We are currently embarked on a substantial project
(funded by NSF and DARPA) to design a new
mobile-code distribution architecture that reconciles
provable security with execution efficiency.

A first major result of this project is our
discovery of a class of mobile code representations
that can encode only programs that provably cannot
harm the target machine—these mobile code formats
therefore provide security “by construction” rather
than “by verification” as currently required by Java
[ADFO1, ADRO1].

Our project also addresses some of the issues of
functionality segmentation, as well as the required
protocols to perform mobile-code verification,
dynamic translation, and execution at perhaps
physically disjoint sites. However, it does not
currently address the handover issues we have
brought up here, nor does it currently address field
programmable hardware.

Our vision is to elevate good power
management into a system-wide quality of mobile-
code systems. We believe to have identified several
topics requiring further research and are already
embarked on the quest for solutions.

Status and Research Vision

Acknowledgement

This paper was inspired by an afternoon that the
author spent at the TIK institute of ETH Zurich
talking to B. Plattner, L. Thiele, and their associates.
The author would also like to thank the anonymous
referees for their constructive comments.

This research effort is partially funded by the
U.S. Department of Defense, Critical Infrastructure
Protection and High Confidence, Adaptable Software
(CIP/SW) Research Program of the University
Research Initiative administered by the Office of
Naval Research under agreement N00014-01-1-0854,
and by the National Science Foundation, Program in
Operating Systems and Compilers, under grant
CCR-9901689.

15-6

References

[ADFO01] W. Amme, N. Dalton, P. H. Fréhlich, V.
Haldar, P. S. Housel, J. v. Ronne, Ch. H.
Stork, S. Zhenochin, and M. Franz;
“Project transPROse: Reconciling Mobile-
Code Security With Execution Efficiency”;
in The Second DARPA Information
Survivability Conference and Exhibition
(DISCEX 1I), Anaheim, California;
IEEE Computer Society Press,
ISBN 0-7695-1212-7, pp. 11.196-11.210;
June 2001.

[ADRO1] W. Amme, N. Dalton, J. v. Ronne, and M.
Franz; “SafeTSA: A Type Safe and
Referentially Secure Mobile-Code
Representation Based on Static Single
Assignment Form”; in Proceedings of the
ACM Sigplan Conference on Programming
Language Design and Implementation
(PLDI 2001), Snowbird, Utah,
pp. 137-147; June 2001.

A. W. Appel and E. W. Felten; “Proof-
Carrying Authentication”; in Proceedings
of the 6th ACM Conference on Computer

and Communications Security, Singapore;
November 1999.

[AF99]

[Citrix] Citrix, Inc.; Citrix® Independent
Computing Architecture and Citrix

MetaFrame™; http://www.citrix.com.

[FK97] M. Franz and T. Kistler; “Slim Binaries”;
Communications of the ACM, 40:12,

pp. 87-94; December 1997.

[Mor96] J. Morrison; Condensed Graphs: Unifying
Availability-Driven, Coercion-Driven and
Control-Driven Computing; Technische
Universiteit Eindhoven, ISBN 90-386-

0478-5; October 1996.

B. C. Pierce and D. N. Turner; “Pict: A
Programming Language Based on the Pi-
Calculus”, in G. Plotkin, C. Stirling, and
M. Tofte (Eds.), Proof, Language and
Interaction: Essays in Honour of Robin
Milner, MIT Press; 2000.

[PT97]

