Power and Energy Impact by Loop Transformations

Hongbo Yangt, Guang R. Gaot, Andres Marquezt, George Cait, Ziang Hut

T Dept of Electrical and Computer Engineering
University of Delaware
Newark, DE 19716
{hyang,ggao,marquez,hu}@capsl.udel.edu

Power dissipation issues are becoming one of the
major design issues in high performance processor
architectures.

In this paper, we study the contribution of com-
piler optimizations to energy reduction. In particu-
lar, we are interested in the impact of loop optimiza-
tions in terms of performance and power tradeoffs.
Both low-level loop optimizations at code generation
(back-end) phase, such as loop unrolling and soft-
ware pipdining, and high-level loop optimizations at
program analysis and transformation phase (front-
end), such as loop permutation and tiling, are stud-
ied.

In this study, we use the Delaware Power-Aware
Compilation Testbed (Del-PACT) — an integrated
framework consisting of a modern industry-strength
compiler infrastructure and a state-of-the-art micro-
architecture-level power analysis platform. Using
Del-PACT, the performance/power tradeoffs of loop
optimizations can be studied quantitatively. We have
studied such impact on several benchmarks under
Del-PACT.

The main observations are:

e Performance improvement (in terms of timing)
is correlated positively with energy reduction.

e The impact on energy consumption of high-
level and low-level loop optimizations is often

12-1

1 Intel Corp
1501 S. Mopac Expressway, Suite 400
Austin, TX 78746
george.cai@intel.com

closely coupled, and we should not evaluate in-
dividual effects in complete isolation. Instead, it
is very useful to assess the combined contribu-
tion of both, high-level and low-level loop opti-
mizations.

In particular, results of our experiments are
summarized as follow:

— Loop unrolling reduces execution time
through effective exploitation of ILP from
different iterations and results in energy
reduction.

— Software pipelining may help in reducing
total energy consumption — due to the re-
duction of the total execution time. How-
ever, in the two benchmarks we tested,
the effects of high-level loop transforma-
tion cannot be ignored. In one bench-
mark, even with software pipelining dis-
abled, applying proper high-level loop
transformation can still improve the over-
all execution time and energy, comparing
with the scenario where high-level loop
transformation is disabled though soft-
ware pipelining is applied.

— Some high-level loop transformation such
as loop permutation, loop tiling and loop
fusion contribute significantly to energy

reduction. This behavior can be attributed
to reducing both the total execution time
and the total main memory activities (due
to improved cache locality).

An analysis and discussion of our results is pre-
sented in section 4.

1 Introduction

Low power design and optimization [8] are becom-
ing increasingly important in the design and appli-
cation of modern microprocessors. Excessive power
consumption has serious adverse effects — for exam-
ple, the usefulness of a device or equipment is re-
duced due to the short battery life time.

In this paper, we focus on compiler optimization
as a key area in low-power design [7, 13]. Many tra-
ditional compiler optimization techniques are aimed
at improving program performance such as reducing
the total program execution time. Such performance-
oriented optimization may also help to save total en-
ergy consumption since a program terminates faster.
But, things may not be that simple. For instance,
some of such optimization my try to improve per-
formance by exploiting instruction-level parallelism,
thus increasing power consumption per unit time.
Other optimization may reduce total execution time
without increasing power consumption. The trade-
offs of these optimizations remain an interesting re-
search area to be explored.

In this study, we are interested in the impact
of loop optimizations in terms of performance and
power tradeoffs. Both low-level loop optimizations
at code generation (back-end) phase, such as loop
unrolling and software pipelining, and high-level
loop optimizations at program analysis and transfor-
mation phase (front-end), such as loop permutation
and tiling, are studied.

Since both high-level and low-level optimization
are involved in the study, it is critical that we should
use a experimental framework where such tradeoff
studies can be conducted effectively. We use the
Delaware Power-Aware Compilation Testbed (Del-
PACT) — an integrated framework consisting of
a modern industry-strength compiler infrastructure
and a state-of-the-art micro-architecture level power
analysis platform. Using Del-PACT, the perfor-
mance/power tradeoffs of loop optimizations can be
studied quantitatively. We have studied the such im-
pact on several benchmarks under Del-PACT.

This paper describes the motivation of loop op-
timization on program performance/power in Sec-
tion 2 and describing the Del-PACT platform in Sec-
tion 3. The results of applying loop optimization on
saving energy are given in Section 4. The conclu-
sions are drawn in Section 5.

2 Maotivation for L oop Optimization
to Save Energy

In this section we use some examples to illustrate the
loop optimizations which are useful for energy sav-
ing. Both low-level loop optimizations at the code
generation (back-end) phase, such as loop unrolling
and software pipelining, and high-level loop opti-
mizations at the program analysis and transformation
phase (front-end), such as loop permutation, loop fu-
sion and loop tiling, are discussed.

2.1 Loop unrolling

Loop unrolling [17]intends to increase instruction
level parallelism of loop bodies by unrolling the loop
body multiple times in order to schedule several loop
iterations together. The transformation also reduces
the number of times loop control statements are exe-
cuted.

12-2

2.2 Software pipelining

Software pipelining restructures the loop kernel to
increase the amount of parallelism in the loop, with
the intent of minimizing the time to completion.
In the past, resource-constrained software pipelin-
ing [10, 16] has been studied extensively by several
researchers and a number of modulo scheduling al-
gorithms have been proposed in the literature. A
comprehensive survey of this work is provided by
Rau and Fisher in [15]. The performance of soft-
ware pipelined loop is measured by II(initiation in-
terval). Every Il cycles a new iteration is initiated,
thus throughput of the loop is often measured by the
value of Il derived from the schedule. By reducing
program execution time, software pipelining helps
reduce the total energy consumption. But, as we will
show later in the paper, the net effect of energy con-
sumption due to software pipelining also depends on
high-level loop transformations performed earlier in
the compilation process.

2.3 Loop permutation

Loop permutation (also called loop interchange for
two dimensional loops) is a useful high-level loop
transformation for performance optimization [19].
See the following C program fragment:

for (i =0; 1 <M i+t {
for (j =0; j <N j+) {
a[jlfi] = 1

}

}

Since the array a is placed by row-major mode,
the above program fragment doesn’t have good cache
locality because two successive references on array a
have a large span in memory space. By switching the
inner and outer loop, the original loop is transformed
into:

for (j =0, j <N j+) {

for (i =0; 1 <M i+t {
a[jlfi] = 14;

}

}

Note that the two successive references on array a
access contiguous memory address thus the program
exhibits good data cache locality. It usually improves
both the program execution and power consumption
of data cache.

24 Loop tiling

Loop tiling is a powerful high-level loop optimiza-
tion technique useful for memory hierarchy opti-
mization [14]. See the matrix multiplication program
fragment:

for (i =0; i <N i++) {
for (j =0; j <N j++) {
for (k =0; k <N k++) {
c[i][i] =c[il[i] +
a[i][k] * b[KI[i];

Two successive references to the same element of
a are separated by N multiply-and-sum operations.
Two successive references to the same element of
b are separated by N2 multiply-and-sum operations.
Two successive references to the same element of ¢
are separated by 1 multiply—and-sum operation. For
the case when N is large, references to a and b ex-
hibits little locality and the frequent data fetching
from memory results in high power consumption.

Tiling the loop will transforme it to:

for (i =0; i <N i+=T) {

for (j =0, j <N j+=T) {
for (k =0; k <N k+=T) {
for (ii =1i; ii <nmin(i+T, N; ii+t) {
for (jj =i jj <mn(j+T, N jj++) {
for (kk = k; kk < min(k+T, N); kk++) {

12-3

clii][ij] =cliil[jj] +
a[ii][kk] * b[kk][jj];
}
}
}
}
}
}

Notice that in the inner three loop nests, we only
compute a partial sum of the resulting matrix. When
computing this partial sum, two successive refer-
ences to the same element of a are separated by T
multiply-and-sum operations. Two successive refer-
ences to the same element of b are separated by T2
multiply-and-sum operations. Two successive refer-
ences to the same element of ¢ are separated by one
multiply-and-sum operation. A cache miss occurs
when the program execution re-enter the inner three
loop nests after i, j or k is incremented. However,
cache locality in the inner three loops is improved.

Loop tiling may have dual effects in improving to-
tal energy consumption: it reduces both the total ex-
ecution time and the cache miss ratios — both help
energy reduction.

2.5 Loop fusion

See the following program fragment:

for (i =0; i <N i+ {
ali] = 1;
}

for (i =0; i <N i+t {
a[i] = a[i] + 1,
}

Two successive references to the same element of
a span the whole array a in the code above. By fusing
the two loops together, we can get the following code
fragment:

for (i =0; i <N i+ {

l.

a[i] =1
a[i] + 1;

ali]
}

The transformed code has much better cache lo-
cality. Just like loop tiling, this transformation will
reduce both power and energy consumption.

3 Power and Performance Evalua-
tion Platform

It is clear that, for the purpose of this study, we must
use a compiler/simulator platform which (1) is ca-
pable of performing loop optimizations at both the
high-level and the low-level, and a smooth integra-
tion of both; (2) is capable of performing micro-
architecture level power simulations with a quanti-
tative power model.

To this end, we chose to use the Del-PACT(
Delaware Power-Aware Compilation Testbed) — a
fully integrated framework composed of SGI MIP-
Spro compiler retargeted to the SimpleScalar [1] in-
struction set architecture, and a micro-architecture
level power simulator based on an extension of the
SimpleScalar architecture simulator instrumented
with the Cai/Lim power model [5, 4], as shown in
Figure 1. The SGI MIPSpro compiler is an industry-
strength highly optimizing compiler. It implements
a broad range of optimizations, including inter-
procedural analysis and optimization (IPA), loop nest
optimization and parallelization (LNO) [18], and
SSA-based global optimization (WOPT) [2, 11] at
high level. It also has an efficient backend includ-
ing software pipelining, integrated global and local
scheduler(IGLS) [12], and efficient global and reg-
ister allocators (GRA and LRA) [3]. The legality
of loop nest optimizations listed in Section 2 de-
pends on dependence analysis [20]. The SGI MIP-
Spro compiler performs alias and dependence anal-
ysis and a rich set of loop optimizations including

12-4

those we will study in the paper. We have ported
the MIPSpro compiler to the SimpleScalar instruc-
tion set architecture.

Source Program
IPA
MIPSpro | FE
compiler LNO
OPT
CG IGLS
GRA/LRA
Physical
Information
Cycle-accurate
Performance Simulator,
(SimpleScalar)
Activity Counters | Parameterized
Power Models
Performance Power
Results Results

Figure 1: Power and Performance Evaluation Plat-
form

The simulation engine of the Del-PACT platform
is driven by the Cai/Lim power model as shown in
the same diagram. The instrumented SimpleScalar
simulator generates performance results and activity
counters for each functional block. The physical in-
formation comes from approximation of circuit level
power behaviors. During each cycle, the parameter-
ized power model computes the present power con-
sumption of each functional unit using the following
formula:

power = AF « PDAx A+ idle power + leakage power

AF Activity factor
PDA Active power density

A Area

The power consumption of all functional blocks is
summed up, thus obtaining the total power consump-
tion.

Other power/performance evaluation platforms
exist as well. A model worth mentioning is Simple-
Power [9]. In [9] loop transformation techniques are
evaluated. In their framework, high-level transfor-
mation and low-level loop transformations are per-
formed in two isolated compilers while in our plat-
form these two are tightly coupled into a single com-
piler. The difference between these two power mod-
els are left to be studied and a related work is found
in [6].

4 Experimental Results

In this section, we present the experiments we have
conducted using Del-PACT platform. Two bench-
mark programs: mxm and vpenta from the SPEC92
floating point benchmark suite are used. We eval-
uated the impact on performance/power of loop
nest optimizations, software pipelining and loop un-
rolling. Loop nest optimization is a set of high-
level optimizations that includes loop fusion, loop
fission, loop peeling, loop tiling and loop permu-
tation. The MIPSpro compiler analyzes the com-
piled program by determining the memory access se-
quence of loops, choosing those loop nest optimiza-
tions which are legal and profitable. Looking through
the transformed code, we see that the loop nest op-
timizations applied on mxm s loop permutation and
loop tiling, while those applied on vpenta are loop
permutation and loop fusion. Performance, power
and energy results of these transformations on each
benchmark are shown in Figure 2.

12-5

N
o
N

Relative Exec Time
g
»

o
@

0.5

Relative Power consumption
N

o
o

mxm vpenta mxm
Benchmarks

5 original
unrolled
software pipelined
15 tiled

swp+tiling

vpenta
Benchmarks

Relative Energy consumption

mxm vpenta
Benchmarks

Figure 2: Performance, power and energy compari-
son

We observe that the performance improvement in
terms of timing is correlated positively with the en-
ergy reduction. From Figure 2 we see the variation
of execution time causes the similar variation in en-
ergy consumption. The results show that in the two
benchmarks we have run, the dominating factor of
energy consumption is the execution time.

Loop unrolling improves the program execution
by increasing instructions level parallelism thus in-
creasing power consumption correspondingly. For
the mxm example, the instructions per cycle(IPC) in-
creased from 1.68 to 1.8 by unrolling 4 times. For
the vpenta example, loop unrolling reduces the to-
tal instruction count by 2% because of cross-iteration
common subexpressions elimination. The IPC value
before the loop unrolling and after that are 1.01 and
1.04 respectively.

Software pipelining helps in reducing total energy
consumption in the mxm example. The IPC value
without and with software pipelining are 1.68 and
1.9 respectively. Power consumption increase a lit-
tle bit more as opposed to the case with loop un-
rolling because software pipelining exploits more in-
struction level parallelism than loop unrolling does.
However, energy consumption is still reduced com-

pared with the original untransformed program. In
vpenta example, software pipelining does not help
because of the high miss rate(13%) of level-1 data
cache accesses.

Loop tiling and loop permutation applied on mm
enhanced cache locality and they can improve the
program performance more than software pipelin-
ing does. Loop permutation and loop fusion help
the vpenta program reduce its level-1 data cache
miss rate from 13% to 10%, thus reducing total en-
ergy consumption. Also these transformations make
the performance improvement of software pipelining
more evident compared with the case that software
pipelining is applied without these high-level opti-
mizations.

5 Conclusions

In this paper, we introduced our Del-PACT plat-
form, which is an integrated framework that includes
the MIPSpro compiler, SimpleScalar simulator and
CAI/LIM power estimator. This platform can serve
as the tool to make architecture design tradeoffs, and
to study the impact of compiler optimization on pro-
gram performance and power consumption. We use
this platform to conduct experiments on the impact
of loop optimizations on program performance vs
power.

References

[1] Todd Austin. The simplescalar tool set, ver-
sion 2.0. Technical Report 1342, Computer Sci-
ences Department, Univ of Wisconsin, 1997.

[2] Fred Chow, Sun Chan, Robert Kennedy, Shin-
Ming Liu, Raymond Lo, and Peng Tu. A new
algorithm for partial redundancy elimination

12-6

[3]

[4]

[5]

[6]

[7]

[8]

9]

based on SSA form. In Proc. of the ACM SG-
PLAN '97 Conf. on Programming Language
Design and Implementation, pages 273-286,
Las Vegas, Nev., Jun. 15-18, 1997. SGPLAN
Notices, 32(6), Jun. 1997.

Fred C. Chow and John L. Hennessy. The
priority-based coloring approach to register
allocation. ~ ACM Trans. on Programming
Languages and Systems, 12(4):501-536, Oct.
1990.

A. Dhodapkar, C.H.Lim, and G.Cai. Tem-
pest: A thermal enabled multi-model
power/performance estimator. In Work-
shop on Power-Aware Computer Systems, Nov
2000.

G.Cai and C.H.Lim. Architectural
power/performance optimization and dynamic
power estimation. Cool Chips Tutorial, in
conjunction with 32nd Annual International
Symposium on Microarchitecture. Haifa, Is-
rael, Nov 1999.

level

Soraya Ghiasi and Dirk Grunwald. A com-
parison of two architectural power models.
In Workshop on Power-Aware Computer Sys-
tems. Cambridge, MA, Nov 2000.

Mary Jane Irwin, Mahmut Kandemir, and Vi-
jaykrishnan Narayanan. Low power design
methodologies: Hardware and software issues.
Tutorial on Parallel Architecture and Compila-
tion Techniques 2000.

J.M.Rabaey and M. Pedram, editors. Low-
Power Design Methodologies. Kluwer, 1996.

Mahmut T. Kandemir, N. Vijaykrishnan,
Mary Jane Irwin, and W. Ye. Influence of com-
piler optimizations on system power. In Pro-
ceedings of the 37th Conference on Design Au-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

12-7

tomation (DAC-00), pages 304-307, NY, June
5-9 2000. ACM/IEEE.

Monica Lam. Software pipelining: An effec-
tive scheduling technique for VLIW machines.
In Proc. of the SGPLAN ’'88 Conf. on Pro-
gramming Language Design and Implementa-
tion, pages 318-328, Atlanta, Geor., Jun. 22—
24, 1988. SGPLAN Notices, 23(7), Jul. 1988.

Raymond Lo, Fred Chow, Robert Kennedy,
Shin-Ming Liu, and Peng Tu. Register promo-
tion by sparse partial redundancy elimination of
loads and stores. In Proc. of the ACM S GPLAN
98 Conf. on Programming Language Design
and Implementation, pages 26-37, Montréal,
Qué., Jun. 17-19, 1998. S GPLAN Notices,
33(6), Jun. 1998.

Srinivas Mantripragada, Suneel Jain, and Jim
Dehnert. A new framework for integrated
global local scheduling. In Proc. of the 1998
Intl. Conf. on Parallel Architectures and Com-
pilation Techniques, pages 167-174, Paris, Oct.
12-18, 1998. IEEE Comp. Soc. Press.

M.Kandemir, N. Vijaykrishnan, M. J. lrwin,
W. Ye, and |. Demirkiran. Register relabeling:
A post-compilation technique for energy reduc-
tion. In Workshop on Compilers and Operating
Systems for Low Power 2000 (COLP’ 00).

Steven S. Muchnick. Advanced Compiler De-
sign and Implementation. Morgan Kaufmann
Publishers Inc., 1997.

B. R. Rau and J. A. Fisher. Instruction-level
parallel processing: History, overview and per-
spective. J. of Supercomputing, 7:9-50, May
1993.

B. R. Rau and C. D. Glaeser. Some scheduling
techniques and an easily schedulable horizon-
tal architecture for high performance scientific

computing. In Proc. of the 14th Ann. Micro-
programming Work., pages 183-198, Chatham,
Mass., Oct. 12-15, 1981. ACM SIGMICRO
and IEEE-CS TC-MICRO.

[17] Vivek Sarkar. Optimized unrolling of nested
loops. In Proceedings of the 2000 international
conference on Supercomputing, pages 153 —
166, Santa Fe, NM USA, May 8 - 11 2000.

[18] Michael E. Wolf, Dror E. Maydan, and Ding-
Kai Chen. Combining loop transformations
considering caches and scheduling. In Proc. of
the 29th Ann. Intl. Symp. on Microarchitecture,
pages 274-286, Paris, Dec. 2-4, 1996. IEEE-
CS TC-MICRO and ACM SIGMICRO.

[19] Michael Wolfe. Advanced loop interchanging.
In Proc. of the 1986 Intl. Conf. on Parallel Pro-
cessing, pages 536-543, St. Charles, Ill., Aug.
19-22, 1986.

[20] Hans Zima and Barbara Chapman. Supercom-
pilersfor Parallel and Vector Computers. ACM
Press, New York, 1990.

12-8

