Energy Management of Virtual Memory on Diskless Devices

Jerry Hom

Ulrich Kremer*

Department of Computer Science
Rutgers University

Abstract

In a pervasive computing environment, applications are
able to run across different platforms with significantly
different resources. Such platforms range from high-
performance desktops to handheld PDAS. This paper dis-
cusses acompiler approach to reduce the energy consump-
tion of adiskless device where the swap space is provided
by aremotely mounted file system accessible viaa wire-
less connection. Predicting swapping events at compile
time alowseffective energy management of aPDAswire-
less communi cation component such as a 802.11 or Blue-
tooth card.

The compiler activates and deactivates the communica
tion card based on compile-timeknowledge of the past and
future memory footprint of an application. In contrast to
OS techniques, the compiler can better predict future pro-
gram behavior, and can change this behavior through pro-
gram transformationsthat enabl e additional optimizations.

A prototype compilation system EELgy has been im-
plemented as part of the SUIF2 compiler infrastructure.
Preliminary experiments based on the SimpleScalar sim-
ulation toolset and three numerical programs indicate the
potential benefits of the new technique.

1 Introduction

Many handheld devices and machines aready have wire-
less communi cation capabilities, alowing them to be part
of alarge and pervasive computing environment that sup-
ports sharing of resources across the network. Traditional
desk-top applications will become increasingly important
for handhel ds which have developed from electronic ad-
dress books and appointment schedul ersto portablework-
stations. For instance, the newest Compaq iPAQ H3600
handheld has64MB of RAM, 16MB of flash memory, and
a 206MHz low-power StrongARM processor [8]. Such

*{jhom,uli } @cs.rutgers.edu; This work was partially supported by
NSF CAREER award No. CCR-9985050

deviceswill run spread-sheets, voice and image recogniz-
ers, and even computation intensive simul ation programs,
just to mention a few. However, many mobile machines
may not have secondary storage such as a disk. Giving
mobile machines the ability to support virtua memory
through a wireless connection can significantly increase
their functionality since the same programs can be exe-
cuted on adesktop machine and the handheld. Thisis par-
ticularly important for programs where the memory needs
vary significantly based on the provided input data. How-
ever, the option of swapping pages over the wirel ess con-
nection comes with the price of additional energy require-
ments due to the wirel ess networking card and communi-
cation costs. In this paper we discuss a compilation strat-
egy that will reduce the energy overhead of swapping over
awireless network through network card hibernation.

Resource hibernation is an effective strategy to save
power and energy of system components and resources
that are not needed during some parts of a program exe-
cution. While not in use, these components and resources
consume energy which may be saved by transferring them
into a hibernation or deep state during their idle periods.
System resources may implement different levelsof hiber-
nation, where each level has a specific tradeoff between
power saved vs. the time it takes to deactivate or reacti-
vate theresource. Typicaly, the “deeper” the hibernation
or sleep mode, the longer it will take to make atransition
to and from this hibernation state, but the less power will
be used by the resource during the hibernation period. Ef-
fective power and energy management of a wireless con-
nectioniscrucia for handheld devices that rely on battery
power since the communi cation component typically con-
sumes a substantial share of the overall energy and power
budget. On Compag’s iPAQ H3600 pocketPC, commu-
nication via an Orinoco WavelL AN 802.11b wireless card
consumes more than 40% to the overall energy budget of
an image processing application [14].

The ACPI (Advanced Configuration and Power Inter-
face[9]) standard specifies hibernation states for different
system resources such as disks, wired and wirel ess Ether-

9-1

net controllers, processors, and displays. ACPI conform-
ing systemsare possi bl etarget systemsfor our compilation
strategy. Most work in resource management for power
and energy savings purposes has concentrated on operat-
ing system and hardware techniques[11, 6, 15, 16, 19]. In
this paper, we investigate the potentia benefit of compiler
directed resource management for a system resource such
as awireless communication card. We will also compare
our approach with an OS approach where deactivation is
based on athreshold strategy, and activationisdone on de-
mand. Our benefit study isbased on a set of three numeri-
cal, array based applications (shal, adi, and tomcatv). All
three applications represent regular problems, for which
many program characteristics can be derived at compile
time. In the future, we will consider irregular problems
and pointer based programs. We believe that computation
intensive simul ation codeswill be part of the program mix
for portable workstations such as Compaqg’'s iPAQ pock-
etPC.

In this paper, we assume that only a single applica-
tion is executing on the handheld machine. In a muilti-
programming environment, the information collected by
our compiler can be used by the underlying operating sys-
tem to effectively schedule page requests across different
active processes.

2 Related Work

The idea of remote virtua memory, particularly dis
tributed and/or shared, has been an ongoing subject for
over 15 years. Comer and Griffioen examine the useful -
ness of adedicated memory server in [7]. They make the
distinction of separating the paging operation from thefile
backing store operation. Then they can focuson designing
efficient memory and file servers. Another approach views
the sum total memory of a cluster as a single cache space
[10]. Dahlin et al. suggest utilizing the memory of idle
nodes. These approaches improve performance by opti-
mizing the use of extended virtual memory.

Recognizing the utility of remote resources, Schilit and
Duchamp make the case for thin clients [18]. They con-
clude the feasibility and desirability for thin clients with-
out adisk and smaller amounts of memory. While not nec-
essarily studying energy consumption impacts, their work
establishes a reference point in motivating low power de-
signs of disklessdevices. From a compiler point of view,
we attempt to optimize energy demands by managing re-
sources such as virtua memory paging.

power

no
. l power management
execution time

shut down|
9{threshold =
OS directed
power management

execution time
Bl active

execution time
0 idie

power

compiler directed
power management

power

L] hibernating
] shut down / wake up

Figure 1: Comparison of compiler vs. OS directed power
mangement.

3 Problem Formulation

For simplicity, we assume that acommunication card only
supports three power mode states: active, idle, and sleep
(hibernate). In the active mode, the card is transmitting
data. Inidle mode, the card is not sending messages, but
listens to the wireless networking treffic. Finally, in the
deep or hibernation mode, the card has been shut down
to save power. There is an overhead for transitions be-
tween hibernation modes. We assume that the perfor-
mance penaltiesfor shutting down and waking up the card
arethe same.

Figure 1 shows the power profile of a sample appli-
cation without any power management, with operating
system guided, and with compiler-directed power man-
agement. The simple OS based technique transfers the
card into sleep mode after a predefined (static) inactiv-
ity threshold. The wake-up operation is performed on de-
mand, and as a result incurs a performance penalty.

This simple example illustrates the advantages of a
compiler-directed approach vs. athreshold based OS ap-
proach. In the former approach, system resources can
make the transition into power saving states earlier, can
bereactivated just-in-timeto avoid performance penalties,
and enable additional optimization opportunities for idle
periods which are shorter than the threshold used by the
OS based technique. It isimportant to note that there are

9-2

more sophi sticated OS based dynamic power management
techniques than the simple technique discussed here [15,
19]. However, the point we want to make isthat in many
cases the compiler can predict future program behavior
and resource requirements more accurately than OS based
techniques, alowing additiona opportunities for power
and energy management optimizations.

The handheld deviceis connected to anetwork file sys-
tem (NFS) viathe wireless connection. Each time a page
fault occurs, therequired page has to berequested over the
wirelesslink, and the program blocks until the page isre-
ceived. Each page fault event leads to a new working set,
with the empty set astheinitial working set of an applica
tion.

Our compilation strategy triesto identify program parts
of the program execution where the working set is either

1. the same for the next = machine cycles, or
2. isabout to change in y machine cycles.

Thisinformationis used to suspend the wireless card if «
islarger than a predetermined benefit threshold, or resume
the card in y cycles, where y is the time needed to reacti-
vatethe card. Both entitieswill be determined by the com-
piler using static performance prediction.

OS guided hibernation may use threshold techniquesto
shut down system components such as a wireless card.
Threshold techniques assume that if a resource has not
been used within the past threshold time units, it will not
be used in the future.

4 EELgry Prototype Compiler

The EELgw * prototype compiler is based on the SUIF2
compilation infrastructure [1]. The compilation strategy
consists of two main phases, with each phase having mul-
tiple steps. During the first phase, program regions are
identified for which the wireless connection needs to be
activated or deactivated. The dataobjectsaccessed in each
region are summarized, and a forward data flow problem
approximates the data objects that will be in memory be-
foreentering each region. If theset of dataobjectsthat will
bereferenced inaregionisasubset of the dataobjectscur-
rently in memory, the execution of the region does not re-
quire the wireless connection to be active.

Inthe second phase, system callsareinserted that either
activateor deactivate thewireless PC card. Deactivationis

1EEL stands for Energy Efficiency and Low-power, and RM stands
for Resource Management. Information about the EEL |aboratory can
be found at http://www.cs.rutgers.edu/~uli/eel.

done as soon as possible, and activation is performed on-
demand. Activation and deactivation operations are as-
sumed to be atomic, i.e., once the PC card isin the pro-
cess of being shut-down, a pending wake-up request has
to wait until the shut-down has been completed and vice
versa. The second phase requires performance prediction
for efficiently placing activation requests. An activation
request beforeaprogram region should only be executed if
thecardisinahibernationstate. If thecard isactive, noac-
tion needs to be taken. This can be easily handled through
theactivation routineitself, or through compiler generated
guards for each activation or deactivation request.

Performance prediction is needed to activate the PC
cardjustintime. Forinstance, if theoverhead of activation
is10° cycles, the activation request should be issued 10°
cycles before the card needsto be active. In addition, per-
formance predictionis required to assess the benefit of de-
activatingthe PC card. Deactivating the card is not benefi-
cia if the next activation request followstoo closdly (i.e.,
before the card is shut-down, a request to reactivate it is
aready pending).

4.1 Phasel- Analyss
This analysis phase consists of several subtasks.

1. Program regions are identified that will serve as the
basis for our anaysis. The compiler will insert hi-
bernate or activate instruction only before such re-
gions. Theinitia prototype system recognizes inner-
most loop nests, called phases[12], and callsto run-
time system functions(e.g. pri nt f) asprogramre-
gions. REGION S denotes the resulting set of re-
gions. The region control flow graph (RCFG) has
REGION S asitsset of nodes, with edges represent-
ing the possible control flow between these regions.
The RCFG issimilar to the phase control flow graph
(PCFG) introduced by Kennedy and Kremer [12].

2. Initialy, data objects are scalar variables and arrays
with their declared sizes. For instance, subcompo-
nents of arrays, such as single rows and columns in
the two-dimensiona case, are not considered. For
each regionr € REGIONS, two sets of data ob-
jects d are determined:

(@ de MUST_REF(r), ifdisreferenced dur-
ing every execution of region r;

(b) d € MAY _REF(r), if dmay bereferenced
during an execution of region r;

The MU ST _REF setsare used to describe data ob-
jectsthat will bein memory after the execution of the

9-3

corresponding region, and M AY _REF sets are the
basisto predict future data object references that may
require swapping over the wireless connection.

3. Thedataflow problem IN _M EM (r) issolved. For
each entry point of aregion r the set of data objects
that are in memory is determined. Since cache poli-
cies such as LRU keep track of the sequence of data
references within afinite window of past references,
anotion of time or decay has to be incorporated into
thedataflow formulation. Initially, wewill solvethis
problem by a simulation process.

4. Each region r is labeled as yes or no depending on
whether the region may require swapping over the
wirel ess connection or not.

if MAY_REF(r) C IN_MEM(r)

then no, otherwise yes

4.2 Phase?2- Code Generation

Thecompiler insertscallsto runtimeroutinesactivate and
hibernate. The effect of these routinesare

if card isinactive
if card isactive

system call “card_on”

activate & .
no action

if cardisactive
if card isinactive

system call “ card_off”

hibernate < { .
no action

The initia approach will place cals to activate and
hibernate a region entry points. A limited set of reshap-
ing transformati onsto enable additiona optimizationswill
be considered. Performance prediction will be used to
moveactivate statementsup theregion control flow graph
to program pointsthat alow the overhead of the activation
to be overlapped with program execution.

Performance prediction will also be used to eiminate
hibernate statementsthat are considered unprofitabledue
to subsequent activate operations. If thedistanceinterms
of execution cyclesbetween ahibernate and activate op-
eration istoo close, the benefit of shutting-down the card
islost. A backward-flow, V-information data flow prob-
lem can be used to determine the length of the minimal
activate-free path for any region exit point. Hoisting of
activate operations, and elimination of hibernate opera-
tionsmay be donein a combined anaysis pass.

Our initial benefit analysis assumes that the compiler
performs a reshape optimization called page fault clus-
tering. Assuming that swapping operations are atomic,

float A(n),

doi =1, n
A(i) = ...

enddo

doi =1, n

B(n), 4(n)

R1
R2

R3

R4

R5

R6

Figure 2: Sample code

i.e., cannot be overlapped, thistransformation will notim-
pact the overal performance of the program. Page fault
clustering is applied if the memory footprint of a region
(M AY _REF (region)) fits into memory. Prefetch in-
structions are generated before such regions, allowing all
potentia page faultsto occur before the execution of the
region, leaving the region free of page faults. Thistrans-
formation allows potential hibernation of the communica-
tion card during the entire region execution.

4.3 Performance Modd

For each region, the performance model has to report
the number of cycles needed to execute it. In our initia
system, symbolic entities such as program size and loop
bounds are assumed to be known at compile time. We
will use amicro-benchmarking approach to determine ba
sic computation and memory access costs as well as the
suspension and activation time of the wireless communi-
cation card [4, 17, 13].

At alater point, we will consider parameterized (sym-
bolic) performance expressions. Our analysis and code
generation strategy has to be modified in order to allow
the evaluation of these expressions at runtime, and based
on the results, will executed the guarded activate and
hibernate operations.

44 Example

In the example program shown in Figure 2, we assume
amemory size of 4, 8, and 12 pages, awrite-allocate pag-
ing strategy, and a LRU page replacement policy. The ar-

94

region memory size
4 8 12

R1 miss miss miss
R2 miss miss miss
R3 miss miss miss
R4 miss | NOmMiss | nomiss
R5 miss miss no miss
R6 miss | NOMiss | nomiss

Table 1: Pagefaultsfor different memory sizesinterms of
pages, assuming that each array requires 4 pages of mem-
ory space.

ray sizen isset such that each array occupies 4 pages. To
simplify the example, scaar variablesareignored, and ar-
raysare assumed to be aligned at page boundaries. Table1
liststhe data space page faultsexpected to occur for differ-
ent memory sizes.

Whether a card should be shut down for a region that
does not incur a page fault will depend on the predicted
execution times for the region. For example, if it takes
longer to shut down the card than executing regions R4 or
R6, then it is unprofitable to shut down the card for these
two regionsfor the 8 page memory case. However, for the
12 page memory, shutting downthecard will be profitable.

45

For our initial implementation, we started with a simple
memory access model to see how closely we approach ac-
tual behavior. In simplifying the memory access, we as-
sume an entire array will be loaded (used) whenever there
isareference toit. By examining the array’s declared size
and data type, we cd culate the number of required mem-
ory pages. However, there areinstances where only asin-
gle row/column is accessed, or the array is accessed in a
triangular pattern. In such cases, we will need more accu-
rate tools to analyze memory patterns. We plan to use a
modified form of Data Access Descriptors (DADsI5, 3]).

Using DADs can aid our andysisin two ways. Firgt,
DADs describe an iteration order in walking through the
dimensions of an array. As pages are swapped out after a
given loop, we may reasonably estimate which pages of
an array remain in memory. For instance, one loop may
iterate forward over an array, while another loop may it-
erate backward over the same array. It can be safeto as-
sumethelast z pages of thearray are still inmemory. Sec-
ondly, DADs aso help by more accurately indicating the
accessed regions of an array. If only asingle row/column
is needed, then the array’s memory access summary is
given by the necessary page(s), and the overall loop mem-

Implementation | ssues

ory block summary will be more concise.

The current prototype implementation approximates
LRU. Our LRU simulation strategy does not consider vir-
tual addresses, but instead uses data and code access sum-
mary information. For each region, a single data struc-
ture describes al data and system cals (pri nt) refer-
enced intheregion. In addition, the total number of pages
needed to store all data and code in memory is recorded.

A key component for approximating LRU is the notion
of age. Alongwith summarizing array accesses at aregion
level, we associate arelative age for each region. Hence,
all array accesses within a region have the same age and
will be replaced at the same time. Thisis easily repre-
sented in a queue, where each element is the region sum-
mary information. In addition, we can remove e ements
from anywherein the queue. For example, if areferenced
array is found somewhere in memory, the containing re-
gionisremoved and placed at theend. If aregionislarger
than thetotal memory, thenet effect isto clear the contents
in memory.

The current implementation computes M AY _REF (r)
for each region r. Instead of computing separate
MUST_REF(r) sets, we se¢ MUST_REF(r) =
MAY _REF(r), which is asimplification. The solution
to IN_M EM/ (r) is approximated by applying the LRU
simulation process to nodes in the RCFG, starting with
the entry node, and choosing the next node according
to the rPOSTORDER numbering [2]. The initia value
of IN.MEM(r) is @. If aloop is encountered, its
entire body is visited twice. The resulting values in
IN_MEM(r) represent the fina solution for region
r. This process is applied recursively for nested loops.
Our heurigtic is motivated by the observation that the
stable state typicaly occurs after a loop has iterated at
least twice. The heuristic may lead to visiting sequences
exponential in the loop nesting depths. However, the
maximal loop nesting depth in a program is typically a
small constant. Our current implementation always picks
the most frequently executed branch of a conditiona
statement as the only branch that is ever executed.

Although we have used and made severa simplifying
assumptions, our analysis is able to predict most page
faults correctly. Table 2 shows the total number of cor-
rectly predicted hits and misses (True Hit/Miss) as well
asincorrect predictions (False Hit/Miss). The parameters
used in these benchmarks are listed in Table 3. The page
sizeisassumed to be 4KB. Only in the case of tomcatv, the
False Miss count was significant. The misprediction oc-
curred for arather small region, resulting in no significant
impact on the overal energy savings and performance.
Detailed energy and performance results are given in the

9-5

shal | adi | tomcatv
True Hit 17 62 304
True Miss 9 1 304
False Hit 1 0 2
False Miss 2 0 100

Table 2: Dynamic page hit/miss prediction accuracy.

next section.

5 Experiments

We modified the SimpleScalar simulator to keep track of
page faults that occur during the execution of a program.
In addition, the simulator logs the cycle times where pro-
gram regions such as loops are entered and exited. The
simulator allows the assessment of the amount of compu-
tation performed for agiven working set, and theresulting
potential benefit of suspension and resumption of thewire-
less card.

For three different programs, we evauated the work-
ing setsfor different memory and program sizes. Given a
particular overhead of the suspend and resume operation
(25,000 CPU cycles), we determined the performance im-
pact and energy savings of our optimization.

If working sets change frequently, the wirdless card
should never be suspended. If the working sets are
changed very infrequently, both OS and compiler based
approaches will lead to similar results. Compiler tech-
niques are superior to OS techniques in cases where a
working set does not change for a length of time that is
comparable to the OS based suspension threshold and on-
demand resumption times.

We assume a performance predictor tells us which re-
gionstake longer than the time required for a suspend op-
eration and then use on-demand resume. We compared
the potential energy savings of our compiler techniques
vs. OS dtatic inactivity thresholds strategies of varying
lengths. Through ACPI, the OS alows the user to tune
threshold levels for various devices. Therefore, we use
thresholdsrelative to the suspend operation time (suspend
overhead).

From simulationtraces, we have anotion of time (cycle
counts) for each benchmark. We also have a correlation
of system power consumption given that earlier measure-
ments show the WavelL AN card to consume 40% of to-
tal system power (iPAQ + WaveL AN). However, hiberna:
tionmode till draws asmall amount of power. Therefore,
while in hibernation we consider total power demands to

Parameters | shal | adi | tomcatv

Table 3: Benchmark parameters.

drop by 1/3. The power level actually drops alittle more
than 1/3, so thisis a dightly conservative over-estimate
(which also makes calculations easier!). Trandating this
into energy comparisons is just a summation or integral
under the curve of the power levels across execution (cy-
cle) time.

5.1 Benchmark Characteristics

Inshal, thereare few regionswhich accessthe same arrays
consecutively across loops. Conversely with adi, each
loop uses dl arrays, hence there is one large region to
suspend the card (after the arrays have been loaded). We
see more interesting behavior in tomcatv where there are
some opportunities to suspend within a large loop (con-
taining severa nested loops), yet the entire loop does not
fit into memory. Thus, each iteration should use some
power management policy to save overall energy.

These three benchmarks use two dimensiona arrays of
size NxN. We chose sizes of N aong with the num-
ber of memory pages M that exhibited interesting behav-
ior. Each memory pageis assumed to have 4KB. If M is
too large, then after initial array accesses there will be no
more page faults. If M istoo small, arrays may not fit at
all, requiring pagefaultseverywhere. Adjusting N mainly
affects the simulation execution time, therefore we try to
keep it small. The parameters used in these benchmarks
are as shown in Table 3.

We want to use OS inactivity thresholds relative to the
suspend operation, however we have measured both sus-
pend/resume times to be about 130ms under Linux 2.4
for the iPAQ, which amounts to about 25 million cycles.
For interesting benchmark results, thisrequiressimulation
runs on the order of days. In order to reduce simulation
times, our analysis scales thisfactor by 1000 before cal cu-
lating potentia energy benefits (i.e., assumes amoreidea
situationin terms of suspension/resumption overhead).

5.2 Simulation Results

Table 4 shows the effectiveness of our compilation strat-
egy over an operating system approach which is based
on inactivity thresholds for card suspension. Results for
different OS threshold values are listed, where each such

9-6

EELgrMm Energy Results
OSthreshold | shal adi | tomcatv | tomcatv (PFC)
1x 101.0 | 99.3 126.5 95.3
10x | 100.1 | 92.6 116.3 87.6
20x 99.7 86.2 104.2 78.5
24x 99.4 — — —
30x | 99.7 | 80.6 98.6 74.3
35x 99.7 78.1 96.7 729
54x 99.7 69.1 96.7 72.8
00 99.7 71.3 96.7 72.8

Table 4: Energy consumption of benchmark programs
with EELgrM energy management. Energy figuresrelative
to OS approach.

valueisamultipleof the suspension overhead of thewire-
less communication card. The reported figures assume a
25,000 CPU cycles suspension overhead. The oo thresh-
old represents the case where the communication card is
always on (i.e., never suspended).

Theresults show that for shal, the OS technique and our
EELgm compiler perform roughly equivalent. Our com-
piler does a better job for larger thresholdsin the adi case
due to the fact that it is able to suspend the card earlier.
Thisresultsin energy savingsover the OS based technique
of almost 30%.

For tomcatv, our compiler does not perform well com-
pared to short OS threshold values. This occurs because
of computationally large loops which contain page faults.
Our compiler identifies this and keeps the card enabled.
Therefore, we miss large opportunities for hibernation.
However, we examined page fault clustering as an en-
abling optimization. By swappinginall necessary databe-
fore a regions, the compiler can direct the card to hiber-
nate within the region. In the presence of page fault clus-
tering (tomcatv (PFC)), our approach always does better
than the OS approach, with energy savings of up to 27%.
In dl cases, the compiler based approach reduced the en-
ergy consumption of al benchmarks as compared to the
case without any power management.

Notethat thereisan implicit asymptotic limit of the en-
ergy savings attainable by power managing the wireless
card (i.e., shutting down the card immediately after pro-
gram start and for the entire duration). For the case of
a WaveL AN on iPAQ, the energy savings limit is about
33%. Indeed, resultsfrom adi show our technique reaches
28.7% savings. On the opposite extreme, we cannot do
much for shal, but neither canthe OS. In programsexhibit-
ing behavior similar tothat of Figure 1, tomcatv revealsthe
potential for more intelligent power management through
thoseidle periods than the OS.

OS and EELgy Performance Results
OSthreshold | shal adi tomcatv
1x 101.3 | 101.7 105.4
10x | 100.3 | 100.2 103.0
20x 100.2 | 100.2 102.9
24x 100.3 | 100.2 —
30x | 100.0 | 100.2 101.0
35x | 100.0 | 100.2 1015
54x | 100.0 | 103.2 100.0
oo | 100.0 | 100.0 100.0
EELgrm 100.2 | 101.7 | 101.0/103.9 (PFC)

Table 5: Execution times relative to the oo threshold.

Although the reported results were obtained for small
problem and main memory sizes, we expect the resultsto
scale well if both entities grow proportionaly (N2 M).
However, if the problem sizes grows faster than the main
memory size, enabling transformations such as page fault
clustering and index set splittingwill become increasingly
important for effective compiler-based techniques.

Using a power management approach may lead to per-
formance degradation due to the on-demand resumption
penalty of thewirelesscard. A summary of theoverall per-
formance pendtiesisgivenin Table 5. Thelargest penalty
we observed for EELgm Was 3.9% relativeto the program
performance without any power management. Overall,
the performance penalties can be considered insignificant.

6 FutureWork

Clearly, more advanced analysis techniques and experi-
ments are needed to further validate the effectiveness of
our approach. Our current implementation does not use
aperformance model to eliminate hibernate statements or
performjust-in-timecard activation. Wearein the process
of integrating page fault clustering as an enabling transfor-
mation into our compiler. Inaddition, wewill consider in-
dex set splitting as an additiona enabling transformation
in cases where the working set of a region is too large to
fit into memory.

We are planning to extend our method to consider
explicit file 1/O, irregular applications, and programs
with pointer-based data structures. We will investigate
how much improvement over our current approach can
be achieved by using refined DAD-based implementa
tions for MAY _REF, MUST_REF, and solving the
IN_MFEM data flow problem. We are also planning to
apply our techniques to non-scientific applications such
as browsers, voice recognition, and image understanding
codes.

9-7

7 Conclusion

Compiler-directed energy management of awireless com-
munication card can be an effective strategy as compared
to an OS based energy management approach. Simulation
results showed energy savings of up to 30% over the OS.
For OS inactivity threshold of 10x —20x card suspension
overhead, energy savings improvements of up to 21.5%
wereobserved, assuming that pagefault clustering was ap-
plied to enable energy optimizations. Not only do these
results show potentia energy benefits, but we aso wish to
emphasize, even under adverse conditions, our compiler
does not perform significantly worse than the OS. That is,
our analysistriesto ensureactua energy savingsbeforedi-
recting the wireless card to hibernate.

Although our intent isto show the benefits and feasibil -
ity of compiler techniques, our results provide an interest-
ing guidefor ACPI. In general, smaller thresholdsyielded
modest energy gains with little performance delay. This
can be understood by noticing that

execution time > resume overhead

Our preliminary estimatesin eliminating this performance
delay by assuming just-in-timeactivation provideup to an
additional 5% energy savings.

References

[1] National Compiler Infrastructure (NCI) project. Overview avail-
able online at http://www-suif.stanford.edu/suif/nci/index.html.,
Co-funded by NSF/DARPA, 1998.

A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-
niques, and Tools. Reading, MA, second edition, 1986.

V. Balasundaram. A mechanism for keeping useful internal in-
formationin parallel programming tools: The data access descrip-
tor. Journal of Parallel and Distributed Computing, 9(2):154-170,
June 1990.

V. Balasundaram, G. Fox, K. Kennedy,and U. Kremer. A static per-
formance estimator to guide data partitioning decisions. In ACM
SIGPLAN Symposiumon Principles and Practice of Parallel Pro-
gramming, pages 213-223, Williamsburg, VA, April 1991.

V. Balasundaram and K. Kennedy. A technique for summarizing
data access and its use in parallelism enhancing transformations.
In Proceedings of the SIGPLAN ' 89 Conference on Programming
Language Design and mplementation, Portland, OR, June 1989.

(2

(3l

(4

(5]

(6]

T. Burd and R. Brodersen. Processor design for portable systems.
Journal of VLS Signal Processing, 13(2-3):203-222, 1996.

D. Comer and J. Griffioen. A new design for distributed systems:
Theremote memory model. In Proc. Summer 1990 USENIX Conf.,
pages 127-126, Anaheim, CA (USA), 1990.

Compag Corp. iPAQ H3600 handheld PC.
http://www.handhel ds.org/Compag.

(8

[9] Intel Corp., Microsoft Corp., and Toshiba Corp. ACPI imple-

menters' guide. Draft, February 1998.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

9-8

M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative
caching: Using remote client memory to improve file system per-
formance. In Proc. Symp. on Operating Systems Design and Im-
plementation, pages 267—280, Monterey CA (USA), 1994.

S. Devadasand S. Malik. A survey of optimization techniquestar-
geting low power VLS circuits. In Proceedingsof the 32th Design
Automation Conference, 1995.

K. Kennedy and U. Kremer. Automatic data layout for distributed
memory machines. ACM Transactions on Programming Lan-
guagesand Systems (TOPLAS), 20(4):869-916, 1998.

U. Kremer. Fortran RED — a retargetable environment for auto-
matic datalayout. In Eleventh Workshop on Languagesand Com-
pilersfor Parallel Computing, Chapel Hill, NC, August 1998.

U. Kremer, J. Hicks, and J. Rehg. A compilation framework for
power and energy management on mobile computers. In Interna-
tional Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’01), August 2001.

J. Lorch and A. Smith. Software strategies for portable computer
energy management. |EEE Personal Communications Magazine,
5(3), June 1998.

E. Macii, M. Pedram, and F. Somenzi. High-level power modeling,
estimation, and optimization. | EEE Trans. on Computer Aided De-
sign, 17(11), November 1998.

R. Saavedra-Barrera. CPU PerformanceEvaluation and Execution
Time Prediction Using Narrow Spectrum Benchmarking. PhD the-
sis, U.C. Berkeley, February 1992. UCB/CSD-92-684.

B. Schilit and D. Duchamp. Adaptive remote paging for mobile
computers. Technical Report CUCS-004-91, 1991.

T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic
power management for portable systems. In Proceedings of the
Sixth Annual International Conference on Mobile Computing and
Networking (MobiCom), Boston, MA, August 2000.

