
Energy Characterization of Embedded Real-Time Operating Systems

Andrea Acquaviva Luca Benini Bruno Ricc´o

DEIS - Universitá di Bologna
Bologna, ITALY 40136

Abstract

In this paper we propose a methodology to analyze the
energy overhead due to the presence of an embedded op-
erating system in a wearable device. Our objective is to
determine the key parameters affecting the energy consump-
tion of the RTOS allowing the development of more efficient
OS-based power management policies. To achieve this tar-
get, we propose a characterization strategy that stimulates
the RTOS both at the kernel and at the I/O driver level by
analyzing various OS-related parameters. Our analisys fo-
cus in particular on the relationship between energy con-
sumption and processor frequency characterizing the differ-
ent functionalities of an RTOS, suggesting a way to develop
effective OS-aware energy optimization policies based on
variable voltage and frequency. Experimental results are
presented for eCos, an open-source embedded OS ported
and installed on a prototype of wearable device, the HP
SmartBadgeIII.

1 Introduction and Motivation

Power consumption has always been a primary design
constraint for most wearable devices. At the same time,
these systems feature an ever increasing software and hard-
ware complexity: a large number of heterogeneous appli-
cations must be supported while matching battery capacity.
To handle complexity while ensuring modularity and fast
time to market, designers are moving towards processor-
based systems-on-chip (SoC) architectures instead of dedi-
cated hardware like ASICs and DSPs. This class of archi-
tectures is well-suited to be managed by an embedded op-
erating system, which introduces a software layer between
applications and the underlaying hardware.

Clearly, in a power-constrained environment, a charac-
terization of the energy impact of the RTOS is required,
and the OS impact on power must be taken into consider-
ation while designing the system. While a large amount of
work has been done in the past to characterize performance,

the energy overhead of RTOSes is not well-studied, even
though it can strongly affect the effectiveness of power-
aware design and power management strategies.

In this context, our work proposes a methodology to
evaluate the energy overhead of embedded OSes. We use
as a case study the eCos Real Time Operating System from
Red Hat, and we apply our methodology to obtain a detailed
energy analysis of the OS impact on a prototype wearable
computer, the HP’s SmartBadgeIII. In particular, we ana-
lyze key factors, like I/O data burstiness and thread switch
frequency, that influence the energy overhead of operating
system services and drivers.

Another important motivation for this work arises from
recent developments in variable-frequency, variable-voltage
processors and the related power management problems
(e.g. voltage scheduling, frequency setting). These tech-
niques require modifications of basic RTOS schedulers to
account for the possibility of adjusting the voltage and
speed level of the processor at run-time depending on the
workload. For this reason, it is important to know how
the power and performance of RTOS services and drivers
change as a function of the CPU clock frequency. We
performed energy characterization at different processor
speeds by exploiting the frequency-setting capabilities of
the StrongARM 1100, the processor core of the Smart-
Badge.

The remainder of the paper is organized as follows. We
survey related work in Section 2. An overview of the sys-
tem, both hardware and software, is provided in Section 3.
In Section 4 we describe in detail how to characterize a real-
time operating system from the energy viewpoint, while in
section 5 we provide experimental results for the character-
ization framework. Section 7 concludes the paper.

2 Related Work

The problem of characterizing the energy profile of a
real-time embedded operating system arises from the in-
creasing complexity of the software architecture of modern
wearable embedded systems. Moreover, operating system

5-1



energy-behavior play an important role for power optimiza-
tion strategies. In the past, indeed, some researchers investi-
gated the possibility of a cooperation between applications
and OS in order to achieve an energy efficient tuning of the
system resources [13][14][7].

Other authors investigated various opportunities to im-
prove the energy efficiency of an embedded operating sys-
tem. For example Vahdat et al. in [21] propose poten-
tial energy-improvements for each functionality, like inter-
process communication, memory allocation, CPU schedul-
ing, while Lebeck et al. in [11] proposed a memory paging
technique that aims at putting as many memory components
as possible in power-down mode. Lorch and Smith in [12]
suggested heuristic techniques to put the processor in low-
power states when identifying idle conditions. Benini et al.
in [5] designed a workload monitoring tool for supporting
effective dynamic power management policies.

In addition, a considerable amount of work has been
done in the area of energy efficient scheduling for real time
operating systems [8][9][10][15][16][18][20][3]. In spite of
this, the need of an energy characterization of an RTOS is a
relatively new concern. Indeed, researchers in the past have
focused mainly on the performance of RTOSes [19][17].
The first attempt to assess the energy overhead of an em-
bedded OS is reported in [6]. This work analyses the
power profile of a commercial RTOS by running two ap-
plications and evaluating the power consumed by the op-
erating system calls. Power analyzis are carried out on a
instruction-set simulator of the Fujitsu SPARClite proces-
sor with instruction-level power models. In this work, the
authors show by means of two examples that power can be
saved by optimizing how the RTOS services are used by the
applications.

Our work differs from [6] in many aspects. First our pur-
pose is to fully characterize an RTOS independently from
the running application. Thus, we develop a methodology
ad-hoc experiment to evaluate from an energy perspective
OS kernel services and drivers as a function of those that
we identified as energy-sensitive factors. As an example,
we tested the I/O drivers by changing data burstiness. More-
over, we perform these experiments at different frequencies,
in order to enable designers to address the side effects of
frequency-setting policies. As an additional difference, we
performed measurements on real hardware, by an experi-
mental set-up described later in the paper.

3 System Overview

In this section we describe the target system for our ex-
periments. The hardware is the SmartBadgeIII, a proto-
type of wearable devices from Hewlett-Packard Laborato-
ries, while the OS is eCos, a real time embedded operating
system from Red Hat that we ported to the target platform.

3.1 The Hardware Platform

In this paper we deal with wearable devices. These sys-
tems are often composed by a System-on-Chip, contain-
ing a processor core, and external chips like power supply
regulators, sensors, audio and video CODEC. The Smart-
badgeIII, our case study, is equipped with the StrongARM
1100 processor[2], which integrates in the same chip an
ARM core, memory management unit, data and instruction
cache, interrupt and DMA controller, and many I/O con-
trollers like UART, audio and LCD. The system has a small
external memory footprint, 1MByte of FLASH and 1MByte
of static RAM. The external audio codec on-board chip in-
terfaces to the CPU with a multimedia communication pro-
tocol.

3.2 RTOS overview

The operating system that we analyze in our work is
eCos, an open source, real-time configurable operating sys-
tem, targeted to deeply embedded applications. This OS
is highly modular, and it allows easy adaptation and in-
stallation on different kinds of embedded platforms while
meeting memory space requirements. Indeed it has a small
memory footprint, in a range from 10 to 100KBytes (de-
pending on the configuration). In addition, eCos is com-
patible with Linux through the EL/IX software layer, that
is a set of common system calls. ECos can be considered
a real time operating system because it can be configured
to provide structures able to managing alarms, timers and
counters.

The overall structure of the OS consists of an hard-
ware abstraction layer (HAL) which encapsulates all the
architecture-dependent features, that interfaces to the ker-
nel and the device driver layers. The kernel software layer
is implemented in a architecture-independent way and pro-
vides the thread management and communications func-
tions, while the devices management layer is composed by a
high-level interface which is protocol dependent and a low-
level architecture/platform dependent structure.

In order to install this RTOS on the SmartBadge, we
modified the HAL structure to adapt it to the memory archi-
tecture and the driver layer to interface with the on-board
peripherals. In particular a serial interface is needed in the
early phase of the porting work in order to build a ROM
monitor which acts as boot-loader and supports remote de-
bugging.

4 Characterization Strategy

The characterization framework can be divided in three
phases. In the first we analyze kernel services, like thread

5-2



management and synchronization. In the second we evalu-
ate the energy efficiency of the I/O drivers, while in the last
phase we compare the energy consumption obtained when
running an application under the RTOS with the stand-alone
version.

An RTOS is useful in an embedded real-time device for
several reasons. One of these is that it creates a multi-
threading environment and it provides time management
functions like alarms and counters. These features are avail-
able through calls to kernel functions. In very complex sys-
tems with many real-time applications running simultane-
ously, the energy overhead imposed by these calls may be-
come sizable.

We faced the problem of characterizing the energy cost
of kernel services by evaluating the energy spent by the sys-
tem call as it is, independently from the type of workload
imposed by the application running. In order to carry out
this measurement, we evaluated the energy consumed by
each single system call.

In the first phase also we analyze how the energy cost of
these calls is affected by tunable parameters. Since usually
the OS is managing multiple processes we are interested
in analyzing the overhead that arises when it switches be-
tween threads as a function of the switching frequency. For
this reason we run two CPU-intensive threads (matrix multi-
plication), which maximize contention for CPU cycles and
do not give any opportunity for context switching on IO-
blocked processes. We compare the energy spent by run-
ning the threads in a serialized way to that spent when the
two threads alternate on the CPU. This evaluation is made at
different switching frequencies and at various clock speeds.
Since we want to isolate the energy overhead due to con-
text switching, we impose very small matrix dimensions, so
that the cache contains both the threads worksets. Indeed,
if this is not true, there is an additional energy cost due to
cache-misses, which is an architecture-dependent effect.

Another important aspect of real-time operating system
in an embedded context is I/O support, allowing application
designers to interface with peripherals at an high abstrac-
tion level disregarding hardware details. The drawback is
the complexity of the additional software that may lead to
additional energy costs. This motivates the second phase of
our methodology, which consist in setting up a number of
benchmarks targeted to stimulate the device drivers and to
find out the main factors affecting the energy consumption.
Since a possible optimization framework may act on I/O
buffer dimensions and processor frequency, we measure the
energy variations due to different levels of data burstiness
and clock speeds. In addition, we have examined the case
of the device contention. As a tunable parameter here we
consider the frequency switching between two competitors.

In the third phase of the characterization framework we
run an application that stresses the I/O drivers and we mea-

sure energy consumption. Then we run a different version
of the same application, built for running in a stand-alone
way, without any RTOS support. This experiment allow us
to evaluate the overall RTOS overhead. The results of our
characterization are shown and commented in next section.

5 Experimental Results

Our experimental set-up consists of a hardware and a
software component. The current absorbed by the Smart-
Badge flows through a I/V conversion board that provides
voltage values proportional to the absorbed current to a
data acquisition board (DAQ). The DAQ communicates to
a PC where a LABVIEW program controls the measure-
ment framework. To obtain energy consumption values we
need to measure both the current and the execution time of
the programs. For this reason we used an accurate software
trigger. Indeed the DAQ board allows an external signal to
start and stop the measurement. We provide this signal by
driving a general-purpose input/output (GPIO) pin of the
StrongARM1100, which can be programmed by writing a
control word on a memory-mapped CPU register. We ver-
ified on the DAQ specification that the delay introduced by
the DAQ board on the trigger signal with respect to the ana-
log inputs is 50ns, a value that is negligible in our context.
Only one instruction is needed to start and stop the measure-
ment. The LABVIEW software is responsible to combine
power and time informations to give energy values.

5.1 Kernel Services

The relative average switching overhead is shown in ta-
ble 1 for a fixed clock frequency value (103.2MHz). The
percentage values reported in this table indicates how the
energy cost increases as the switching frequency increases.
We measured the energy consumption needed to perform
2 millions matrix multiplications where the matrix dimen-
sions are 210 x 10. The reason for the small matrix size,
as explained in the previous section, is to minimize the im-
pact of cache conflicts between the two processes. The re-
sults show that increasing the context switching frequency
from zero (no switching) to 10KHz does not affect the en-
ergy consumption in a significant way. Repeating the exper-
iment at different processor clock frequencies leads similar
results, with the notable exception of the minimum avail-
able processor frequency (59MHz). At this frequency the
fastest context switching cannot be supported, and the sys-
tem malfunctions.

From this experiment we conclude that context switch is
very efficient from an energy viewpoint. However, it must
be considered that we choose the benchmark in order to
evaluate the overhead of the pure OS-related context switch,
disregarding the cache-related energy variations that arise if

5-3



we increase the matrix dimensions, as shown in table 7 and
explained later. It is also important to remember that, even
though context switching does not affect much energy con-
sumption at all processor clock frequencies, the total energy
needed to carry out the computation is strongly impacted by
clock frequency.

In figure 1 we reported the results of the experiment de-
scribed above for different clock frequency values, by main-
taining the context switching frequency fixed (maximum
value). The shape of the plot shows that the energy con-
sumption decreases as the clock speed increases up to 20%.
This is due to the CPU-dominated nature of the workload
(when I/O is dominant, the behavior is different [1]). This
result can be easily explained by considering that the en-
ergy is the product between the average power and the total
execution time. If we consider that the steady state current
(and hence the power) profile obtained when running this
experiment is almost flat since the processor does not ac-
cess the external bus, the energy cost of thread switching
is proportional to the time spent besides the not-switching
case. For this reason, when the processor speed increases,
the total execution time decrease, so the number of switches
decrease and the total time spent due to the kernel calls de-
crease even if the time needed to perform a single switch
decrease.

Besides context switching, we also performed an experi-
ment in order to evaluate the overhead of each single kernel
call. The results are shown in table 6. The testing param-
eters are shown in table 5. We made several calls for each
kernel function, then in table 6 we have reported also the
minumum and maximum energy values. In the table we
reported experimental results related to both the minumum
and the maximum available processor clock speed. In ac-
cordance to what we observed in the thread switching exper-
iment, also in this case the energy cost is smaller at higher
frequencies with a few exceptions. In fact, the reduction in
execution time due to the increase of the processor speed
doesn’t affect the energy contribution proportional to the
frequency, but reduces the the cost of the static component.
This table can be used by application designers to estimate
the cost of various OS calls in their code without resorting
to detailed measurements.

Summarizing, the results obtained in this first phase in-
dicate that for an application characterized by a small data
working set and by low peripherical activity, it’s convenient
to work at an high speed.

5.2 I/O Drivers

As explained in section 4, we evaluated the energy be-
haviour of I/O drivers both in a single and a multi-task envi-
ronments. First, we evaluate the relative energy consump-
tion of the RTOS audio driver by sending a block of data

fSWT Energy(mJ)
0 ref.

100Hz +0.69%
2KHz +0.74%
5KHz +0.80%
10KHz +1.22%

Table 1. Thread switch experiment: Energy
variation due to different switching frequen-
cies with a fixed clock frequency (103.2Mhz)

50 100 150 200 250
Clock Frequency (MHz)

7000

8000

9000

10000

E
ee

rg
y 

(m
J)

 
Figure 1. Thread switch experiment: Energy
consumption for different clock frequencies
at the maximum switching frequency

towards the audio channel. Table 2 shows the results of the
experiment carried out for different levels of data burstiness
and for a fixed clock frequency. When the burstiness is high,
the CPU accumulates a large burst of data (with respect to
the device’s output buffer) before sending it to the device.
We note that starting from the smaller burst size, the energy
consumption decreases weakly. This is the result of two
compensating contributions: the first is the energy overhead
due to the higher number of calls to the driver primitives;
the second, which lightly overcomes the first, is the energy
saved avoiding additional idle cycles.

In effect, when the CPU sends data bursts that are large
with respect to the size of the device output buffer, the CPU
experience idleness when the output buffer is full. In such
time intervals, it spends a non-negligible amount of en-
ergy by polling a synchronization variable. On the contrary,
when the burstiness is comparable to the buffering capabil-
ity of the device, idle intervals are reduced. Because a small
level of burstiness allows better system responsiveness, it is
convenient to organize the data in little bursts, if possible.
From this results it comes out that we can do this without
an additional energy cost.

We performed the same experiment by changing the

5-4



BurstSize(bytes) Energy(J)
400 ref.

4000 -1.45%
40000 -1.74%

Table 2. Variation of the audio driver energy
consumption due to different level of data
burstiness at a fixed clock frequency

clock frequency and we shown the results in Figure 2. In
this case we observe a different behavior with respect to the
CPU-bound application. Indeed, the energy consumption
increases significantly as the clock speed increases. In ef-
fect, we notice a variation greater than 40% in the energy
consumption from the minimum to the maximum clock fre-
quency value. The reason is the energy wasted by the CPU
during the idle intervals increases as the clock speed in-
creases, because idle intervals are longer. The experimen-
tal result indicate that for an application characterized by a
wide use of the external memory and the peripherals (e.g.
data streaming) a lot of energy can be saved by setting the
processor speed as lower as possible.

The last experiment we performed for the audio drivers
is the measure of device-contention costs. We set-up two
threads that alternatively access the audio driver with a cer-
tain switch frequency. In table 3 we show the results. The
energy increases as the switching frequency increases, and
the energy variation is higher with respect to the case of
switching two CPU-bound threads.

50 100 150 200 250
Clock Frequency (MHz)

1500

2000

2500

3000

3500

E
ne

rg
y 

(m
J)

Figure 2. Energy consumption of the audio
driver for different clock speeds at fixed data
burstiness

fSWT Energy(mJ)
0Hz ref.

10Hz +8.43%
100Hz +10.0%
1KHz +10.1%

10KHz +10.5%

Table 3. Variation of the energy consumed by
the audio driver in presence of device con-
tention for different switch frequencies

E 59MHz E 132.7MHz E 221.2MHz code sz.(KB)
stdalone 7.634J 9.834J 12.430J 43.172

ecos 8.118J 13.20J 18.040J 55.540

Table 4. Comparison between the energy con-
sumed by two version of the speech en-
hancer: OS based and stand-alone

5.3 Application Example: RTOS vs Stand-alone

As final experiment, we run the same application with
and without the RTOS support. The application is an adap-
tive audio-noise canceler, which takes audio samples from
the input, perform LMS filtering and sends the filtered sam-
ples towards the serial channel. In order to do the compari-
son, we built two versions of the filter. One version exploits
the serial and audio drivers provided by eCos, the second ac-
cesses directly both the I/O channels. Since the application
must play a fixed amount of audio data on the output, the
execution time is the same for both versions and the energy
measure is also a power measure. In Table 4 we summarize
the results of the comparison. Near to the energy consump-
tion values we show also the difference in code size. We
note that the energy overhead of the OS is not due to the
increased size of the application, but mainly to the driver’s
overhead.

From these measurements we conclude that event though
some kernel services (e.g., context switching) are very effi-
ciently implemented from an energy viewpoint, the pres-
ence of an OS (even a lightweight one, like eCos) can have
significant impact on the energy consumption of an embed-
ded systems. Our experiments show that most energy losses
are due to device drivers and contention management for
I/O resources. These OS routines are based on idle waiting
(for performance reasons) which is very energy-inefficient.

5-5



fCLK = 59MHz fCLK = 221:2MHz

Avg Energy(�J) Min Max Avg Energy(�J) Min Max Function
15.86 12.63 38.94 3.82 3.53 12.53 Create thread
1.69 1.68 11.45 0.47 0.40 3.56 Yield thread [all suspended]
3.34 2.52 16.65 0.99 0.65 3.55 Suspend [suspended] thread
1.24 1.04 5.35 0.40 0.34 2.74 Resume thread
1.96 1.63 4.90 0.60 0.50 1.56 Set priority
0.83 0.15 3.42 0.27 0.00 1.43 Get priority
7.24 4.76 44.89 1.74 1.22 9.87 Kill [suspended] thread
1.55 1.48 4.31 0.45 0.40 1.34 Yield [no other] thread
5.01 3.42 14.72 1.33 0.83 2.54 Resume [suspended low prio] thread
1.18 1.04 2.53 0.35 0.25 0.63 Resume [runnable low prio] thread
2.71 1.93 11.44 0.75 0.56 2.44 Suspend [runnable] thread
1.55 1.48 4.31 0.45 0.40 2.75 Yield [only low prio] thread
1.33 1.04 4.01 0.37 1.22 3.34 Suspend [runnable! not runnable]
6.09 4.75 16.94 1.45 1.22 3.12 Kill [runnable] thread
5.80 3.41 27.20 5.43 0.86 7.65 Destroy [dead] thread
8.39 4.61 20.51 2.23 1.90 5.58 Destroy [runnable] thread

29.20 21.70 60.80 7.06 5.68 13.54 Resume [high priority] thread
3.69 3.42 25.42 0.86 0.80 5.35 Thread switch

Table 6. Energy consumption of kernel functions at minimum and maximum clock frequencies:59MHz
and 221.2MHz

Testing parameters Value
Clock samples 32

Thread 50
Thread switches 128

Mutexes 32
Semaphores 32

Scheduler operations 128

Table 5. Testing parameters for the experi-
ment related to table 6

6 Cache Related Effects in Thread Switching

In order to evaluate the cache-related effects that man-
ifest themselves when two thread that are switching con-
tend for the cache, we performed the same matrix multi-
plication experiment described in the previous section, but
with a larger matrix size, 250x250, in such a way that the
data cache does not hold the whole thread work-set. The
results presented in table 7 show that in this case the cost of
the switching is much higher. Indeed the energy consump-
tion increases not only because the execution time of each
thread is higher, but also because there is an increase in the
average power consumption due to the memory external ac-
cess related to cache-misses arising at each context switch.
Even though these effects are not caused by the presence of
the OS, they should be considered when developing energy-
efficient scheduling strategies.

fSWT Energy(J)
0Hz 14.662

100Hz 29.330
1KHz 30.108
2KHz 31.696
5KHz 23.190

10KHz 24.651

Table 7. Energy cost of thread switching in
presence of cache-related effects

7 Conclusions

In this paper we presented a characterization method-
ology and a detailed analysis of energy consumption for
RTOSes. We presented extensive measurements and a com-
plete characterization for a case study, namely the eCos op-
erating systems, and the prototype wearable computer HP
SmartBadgeIII. Our work indicates that the knowledge of
the energy behaviour of the RTOS is important for the ef-
fectiveness of power management policies based on voltage
and frequency scaling and suggest how to improve them, by
taking into cosideration the energy behaviour of the differ-
ent parts of an RTOS.

5-6



References

[1] A. Acquaviva, L. Benini, B. Riccó, “An Adaptive Algorithm for
Low-Power Streaming Multimedia Processing,” Design, Automation
and Test in Europe Conference, pp. 273–279, March 2001.

[2] Advanced RISC Machines Ltd., Advanced RISC Machines Archi-
tectural Reference Manual, Prentice Hall, New York, July 1996

[3] F. Bellosa, “Endurix: OS-Direct Throttling of Processor Activity for
Dynamic Power Management,” Technical Report TR-I4-99-03, Uni-
versity of Erlangen, June 1999.

[4] L. Benini, G. De Micheli, “System-Level Power Optimization: Tech-
niques and Tools,” ACM, TODAES, Vol. 5, No. 2, pp. 115–192,
April 2000.

[5] L. Benini, A. Bogliolo, S. Cavallucci, B. Riccó, “Monitoring System
Activity for OS-Directed Dynamic Power Management,” IEEE Inter-
national Symposium on Low Power Electronic and Design, pp. 185–
190, Aug 1998.

[6] R. P. Dick, G. Lackshminarayana, A. Raghunathan, N. K. Jha,
“Power Analysis of Embebbed Operating Systems,” Design and Au-
tomation Conference, pp. 312–315, – 2000.

[7] M. Flinn, M. Satyanarayanan, “Energy-Aware Adaptation for Mobile
Application” ACM SOSP, pp. 48–63, December 1999.

[8] I. Hong, M. Potkonjak, M. B. Srivastava, “On-Line Scheduling of
Hard Real-Time Tasks on Variable Voltage Processors,” ICCAD,
pp. 653–656, November 1998.

[9] C. M. Krishna, Y. H. Lee, “Voltage-Clock-Scaling Adaptive Schedul-
ing Techniques for Low-Power in Hard Real-Time Systems,” RTAS,
May 2000.

[10] T. Ishihara, H. Yasuura, “Voltage Scheduling Problem for Dy-
namically Variable Voltage Processor,” ISLPED, pp. 197–202, Au-
gust 1998.

[11] A. Lebeck, X. Fan, H. Zeng, C. Ellis, “Power Aware Page Alloca-
tion,” ACM ASPLOS, pp. 105–116, June 2000.

[12] J. Lorch, A. J. Smith, “Reducing Processor Power Consumption by
Improving Processor Time Management in a Single-User Operating
System,” MOBICOM, pp. 143–154, 1996.

[13] B. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
K. R. Walker, “Agile Application-Aware Adaptation for Mobility,”
ACM SOSP, pp. 276–287, 1997.

[14] B. Noble, “System Support for Mobile, Adaptive Applications,”
IEEE Personal Communications, pp. 44–49, February 2000.

[15] T. Okuma, T. Ishihara, H. Yasuura, “Real-Time Task Scheduling for
a Variable Voltage Processor,” DAC, pp. 176–181, June 1998.

[16] Y. Shin, K. Choi, “Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems,” DAC, pp. 134–139, June 1999.

[17] L. Thiele, S. Chakraborty, M. Naedele, “Real Time Calculus for
Scheduling Hard Real-Time Systems,” IEEE International Sympo-
sium on Circuits and Systems, pp. 101–104, May 2000.

[18] I. Weiser, B. Welch, A. Demers, S. Shenker, “Scheduling for Re-
duced CPU Energy,” SOSDI, pp. 13–23, November 1994.

[19] K. Weiss, T. Steckstor, W. Rosenstiel, “Performance Analysis of an
RTOS by Emulation of an Embedded System,” IEEE International
Workshop on Rapid System Prototyping, pp. 146–151, 1999.

[20] F. Yao, A. Demers, S. Shenker, “A Scheduling Model for Reduced
CPU Energy,” Annual Foundation of Computer Science, pp. 374–
382, October 1995.

[21] A. Vahdat, A. Lebeck, C. Ellis, “Every Joule is Precious: The Case
for Revisiting Operating System Design for Energy Efficiency,” ACM
SIGOPS European Workshop, 2000.

5-7


