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Abstract 

Operating systems in embedded wireless 
communication increasingly must satisfy a tight 
set of constraints, such as power and real time 
performance, on heterogeneous software and 
hardware architectures. In this domain, it is well 
understood that traditional general-purpose 
operating systems are not efficient or in many 
cases not sufficient. More efficient solutions are 
obtained with OS’s that are developed to exploit 
the reactive event-driven nature of the domain 
and have built-in aggressive power management.  
As proof, we present a comparison between two 
OS’s that target this embedded domain: one that 
is general-purpose multi-tasking and another 
that is event-driven.  Preliminary results indicate 
that the event-driven OS achieves an 8x 
improvement in performance, 2x and 30x 
improvement in instruction and data memory 
requirement, and a 12x reduction in power over 
its general-purpose counterpart. To achieve 
further efficiency, we propose extensions to the 
event-driven OS paradigm to support power 
management at the system behavior, system 
architecture, and architecture module level. The 
proposed novel hybrid approach to system power 
management combines distributed power control 
with global monitoring. 

1. Introduction 
The implementation of small, mobile, low-cost, 
energy conscious devices has created unique 
challenges for today’s designers. The drive for 
miniaturization and inexpensive fabrication calls 
for an unprecedented high level of integration 
and system heterogeneity.  Limiting battery 
lifetimes make energy efficiency a most critical 
design metric and the real time nature of 
applications impose strict performance 
constraints. 

To meet these conflicting and unforgiving 
constraints, we must rethink traditional operating 
system approaches in embedded wireless 
communication. General-purpose operating 

systems developed for broad application are 
increasingly less suitable for these types of 
complex real time, power-critical domain 
specific systems implemented on advanced 
heterogeneous architectures. The current practice 
of independently developing the OS and the 
application, in particular the paradigm of blindly 
treating a task as a random process, is unlikely to 
yield efficient implementation [1]. What is 
needed is an OS that is more intimately coupled 
to, aware of, and interactive with its managed 
applications. Specifically, a “lean” but capable 
OS that is developed to target the nature of these 
reactive event-driven embedded systems. It 
should execute with minimal overhead, be agile, 
and deploy aggressive power management 
schemes to drive down overall system energy 
expenditure. 

To illustrate these concepts, we construct our 
argument in two steps.  To demonstrate the 
benefit of a specialized OS that closely matches 
the application, we will first present a detailed 
comparison between two OS implementation of 
the same design -- a wireless protocol stack. The 
first is eCOS [2], a popular embedded general-
purpose multi-tasking OS and the second is an 
event-driven OS called TinyOS [3]. Preliminary 
results indicate that the event-driven OS achieves 
an 8x improvement in performance, 2x and 30x 
improvement in instruction and data memory 
requirement, and a 12x reduction in power over 
its general-purpose counterpart. 

The results are certainly very positive, however, 
we believe that further improvement can be 
obtained from proper extension of TinyOS. 
TinyOS possess certain qualities that are very 
attractive for low power heterogeneous systems. 
Its event-driven asynchronous characteristics can 
naturally support the interactions and 
communications between modules of vastly 
different behavior and processing speeds in a 
heterogeneous system. Its simplicity incurs 
minimal overheads and it has some support for 
concurrency.   
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Nevertheless, TinyOS has its own limitations 
and is insufficient to fulfill the ambitious role 
demanded by low power heterogeneous systems. 
First at all, TinyOS primitives are 
microprocessor centric, while advanced system 
architectures consist of heterogeneous modules 
of custom logic, programmable logic, memories, 
DSPs, embedded processors, and other 
optimized domain specific modules.  
Furthermore, TinyOS only supports rudimentary 
power management scheme.  The logical next 
step is to extend TinyOS and establish it as the 
global management framework that incorporates 
the heterogeneous architecture modules in the 
system, as well as devise sophisticated power 
management mechanisms. 

The rest of the paper is organized as following: 
Section 2 presents a detailed comparison 
between two OS implementations of the same 
wireless protocol design; Section 3 proposes a 
low power reactive operating system for 
heterogeneous architectures and the associated 
global and local power management strategies; 
and Section 4 concludes the paper. 

2. Event-driven versus general-
purpose OS 
A close “match” between the application and of 
the OS greatly improves opportunity to efficient 
final implementation. By match we mean to have 
Models of Computation (MOC) [4] that are 
similar to that of the application. MOC is a 
formal abstraction that defines the interaction of 
the basic blocks in the system behavior. In 
particular, three important properties of the 
specification: sequential behavior, concurrent 
behavior, and communication have to be clearly 
defined.  

In the following section, we will present a 
comparison between a traditional general-
purpose multi-tasking OS and an event-driven 
OS in terms of MOC, generality, 
communication, concurrency support, and 
memory and performance overhead. The 
implementation of a wireless protocol design is 
used as the case study for both. 

2.1 PicoRadio II Protocol Design 

PicoRadio [4] is an ad hoc, sensor-based wireless 
network that comprises hundreds of 
programmable and ultra-low power 
communicating nodes. PicoRadio applications 
have the following characteristics: low-data rate, 
ultra-low power budget, and mostly passive 

event-driven computation. Reactivity is triggered 
by external events such as sensor data 
acquisition, transceiver I/O, timer expiration, and 
other environmental occurrences. The chosen 
MOC for the PicoRadio protocol stack is 
Concurrent Extended Finite State Machines 
(CEFSM) [5]. CEFSM models a network of 
communicating extended finite state machines  
(EFSM), which are finite state machines that 
effectively express both control and the 
computation found in datapath operations. Each 
layer in the protocol stack is modeled as an 
EFSM. The communication between EFSMs is 
asynchronous because the stack layers work at 
differing rates: the lower layers typically run 
much faster than the higher layers.  

In this second version of the PicoRadio design 
(PicoRadio II), the protocol stack has a simple 
User Interface (UI) layer, a transport layer, a 
MAC layer, and an interface to the physical 
layer. Different layers in the stack have vastly 
different processing granularities and speeds: 
Physical layer processes at bit level and has to 
respond in microseconds, while UI reacts to user 
requests in seconds and even minutes. Due to 
their different behavior activity and 
characteristics, the UI and transport layers are to 
be implemented in software on the embedded 
processor while the MAC and physical layers are 
implemented with the support of custom 
optimizes hardware modules. 

2.2 General-purpose Multi-tasking OS 

The general-purpose multi-tasking OS was 
originally developed for the PC platform and 
later adapted for general embedded systems. It is 
good for supporting several mostly independent 
applications running in virtual concurrency. 
Suspending and resuming amongst the processes 
when appropriate provide support for multi-
tasking and/or multi-threading. Inter-task 
communication involves context switching 
which can become an expensive overhead with 
increased switching frequency. This overhead is 
tolerable for PC applications since the 
communication and hence switching frequency is 
typically low when compared to the computation 
block granularity. Moreover, as these overheads 
grow, the wasted energy expenditures are of 
relatively little concern for these virtually infinite 
energy systems. As general-purpose OSs do not 
target low power applications, they have no 
built-in energy management mechanisms and 
any employed are wholly deferred to the 
application with its limited system scope. 
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It is apparent that the MOC of the general-
purpose OS is quite different from that of the 
protocol stack. The processes across the layered 
protocol stack are not independent. They are 
coupled and activate and deactivated with events 
from neighboring processes. In other words, the 
communication frequency is high amongst 
neighbors and high overheads are far less 
tolerable. As we will see shortly, this MOC 
“mismatch” results in major inefficiencies. 

We have designed a chip to implement the 
PicoRadio II protocol stack. Our main design 
tool is Virtual Component Codesign (VCC) from 
Cadence Design Systems [6]. The VCC flow 
covers the entire design process from behavior 
specification to architecture exploration, all the 
way down to final hardware/software 
implementation. The software implementation 
process in VCC takes a traditional approach and 
assumes a general purpose multi-tasking OS. 
The code generation is accomplished by turning 
each concurrent system component in the 
specification into a task. Communication 
wrapper functions are then generated to connect 
the tasks and the OS. We have chosen the 
popular eCOS as our embedded OS due to its 
availability and efficiency.  

From the chip layout, we notice that the software 
portion of the architecture including the 
processor and its memory blocks occupies more 
than 70% of the total area. This is especially 
inefficient considering that the processor is 
greatly under-utilized (utilization < 7%). Reason 
being that the software-implemented UI and 
transport layers run at much lower activity and 
rate (user request and packet level processing) 
than the hardware-implemented MAC and 
physical layers (bit level processing).  

Careful analysis of the software code reveals that 
of the total 10K byte instruction code size, about 
50% is communication overhead. The massive 
data memory size of 54K is a result of the 
communication overhead, expensive scheduler 
overhead, memory management, and stack 
allocations.  

2.3 Event-driven OS 

TinyOS specifically targets event-driven 
communication systems. Its MOC is CEFSM, 
which matches that of the protocol processing 
system.  This match drastically reduces the 
communication overhead as well as other OS 
related costs.  Because TinyOS is not designed to 
support a broad range of general applications, it 
can cut down on expensive OS services such as 
dynamic memory allocation, virtual memory, 
etc. In addition, unnecessary performance-
degrading polling is eliminated and context 
switching is minimized and very efficiently 
implemented. 

In TinyOS, an application is written as a graph of 
components. For the PicoRadio II example, 
components would be the layers in the protocol 
stack. Each component has command and event 
handlers that process commands and events from 
other components, tasks that provide a 
mechanism for threaded description, and a static 
frame that stores internal state and local 
variables. 

The TinyOS system operation can be briefly 
described as following: external events from the 
RF transceivers or sensors propagate from the 
lowest layers up the component graph until 
handled by the higher layers. To prevent event 
loss, the system must process incoming events 
faster than their arrival rate. Threaded behavioral 
description is supported via tasks, which are 
operations in the event or command handlers that 
require a “significant” number of processor 
cycles. Tasks are pre-empted by the arrival of an 
incoming event and are dispatched from a task 
queue. TinyOS uses a simple FIFO task 
scheduler. Built-in power control is exercised by 
shutting down the CPU when no tasks are 
present in the system after all event processing. 

We have re-implemented the PicoRadio II 
protocol stack using TinyOS. In the next section, 
we will present a comparison between the 
general-purpose OS (eCOS) and the event-driven 
OS (TinyOS) in three important performance 
metrics: memory requirement, performance, and 
power.  
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2.4 Comparison Summary 

Table 1 summarizes the contrast between the two 
OS’s as presented in Section 2.2 and 2.3. Table 2 
shows the memory requirement comparison 
between the two OS’s. With the same processor 
selection (16 bit ARM7), TinyOS needs half the 
instruction memory and one-thirtieth the data 
memory. Studies showed that the power 
consumption of SRAM scales roughly as the 
square root of the capacity [7]. This implies that 
with TinyOS, instruction memory power can be 
reduced by 1.6x, and data memory power by 

4.2x. Using a simpler processor such as 8-bit 
RISC could further reduce memory size and 
power consumption. 

 Figure 1 presents the performance comparison. 
The left graph compares the total processor cycle 
count: 16365 vs. 2554. TinyOS shows a factor of 
eight improvements, which translates directly to 
a factor of eight reductions in processor power 
consumption. The right graph compares the OS 
overhead (the lowest portion of the bars) as a 
percentage of the total cycles. As an indication of 
its inefficiency, the general-purpose OS has an 
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Table 1: General comparison. 
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Table 2: Memory requirements comparison. 
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Figure 1: General-purpose versus event-driven OS. Key at right identifies system components.  
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OS overhead of 86% while TinyOS has 10%. 

Now let us calculate how much power is actually 
saved considering both the processor and its 
memory blocks. With a 0.18µm technology and 
a supply voltage of 1.8V, an ARM7 consumes 
0.25mW/MHz. For a memory size of 64KB, read 
per access consumes 0.407mW/MHz and write 
consumes 0.447mW/MHz.  Assume that 10% of 
the instructions involve memory read operations 
and 10% memory writes and apply memory size 
as well as processor cycle count scaling, the 
power consumption for the two OSs are: 
0.608mW/MHz and 0.053Mw/MHz.  That is, 
TinyOS demonstrates a factor of 12 
improvements in power. 

One may argue that eCOS is an overkill and 
could be optimized to yield better performance 
and power.  ECOS is a reconfigurable OS, and 
the authors choose the configuration options that 
yield the smallest and simplest implementation. 
While further optimization could be applied, 
with a factor of 12 win in power, TinyOS should 
remain far superior.  

3. Low Power Reactive OS for 
Heterogeneous Architectures  
Our driving research goal is to design an energy 
efficient OS for domain specific heterogeneous 
architectures. We believe that some basic 
TinyOS concepts are very attractive and can be 
adopted to reach such a goal. TinyOS’s event-
driven asynchronous characteristics can naturally 
support the interactions and communications 
between modules of vastly different behavior 
and processing speeds in a heterogeneous 
system. Its simplicity reduces overheads and 
leads to more power efficient implementation.  It 
also provides some support for multiple flows of 
control that are typical of wireless sensor 
applications.  

However, TinyOS has its limitations and is 
insufficient for our research goal. It has to be 
properly extended to the system level to include 
management of not only computation on the 
embedded processor, but also computation on 
the optimized architecture modules.  In the 
following sections, we will elaborate on the roles 
of the “system level OS” in the context of 

PicoRadio III, a next generation heterogeneous 
wireless communication system and discuss the 
necessary TinyOS extensions. 

3.1 Event-driven Global Scheduler and 
Power Management 

In a complex heterogeneous system, the OS acts 
like a hardware abstraction layer [8] that 
manages a variety of system resources. For a 
power critical application, simplicity should be 
the primary design philosophy. The OS should 
perform a dedicated set of indispensable duties 
and only these duties.  There are two basic OS 
duties: concurrency management at both 
application and architecture levels and global 
power management.   

Wireless sensor applications typically have 
multiple flows of control and data. A sensor 
node can sense the environment, forwards 
packets and receive commands all at the same 
time. The OS needs to support concurrency in 
the application as well as explore and utilize the 
concurrency in the heterogeneous architecture. 
Since the OS has the global “view” of the 
system, it can also perform global power 
management to optimize the system power 
consumption. Essentially, the OS is a global 
scheduler with power management. 

In our vision of the system architecture, the OS 
is refocused from the microprocessor and 
becomes a separate unit that can be implemented 
in software, hardware, reconfigurable logic, or 
some combination.  Traditional software centric 
control approaches have a central control unit 
that schedules communication between the 
system modules.  We believe that a more 
efficient approach is to distribute control over the 
entire system. Global monitoring is added to 
further improve the system performance via 
feedback derived from observations with greater 
system scope. In this control framework, 
communication can occur between certain 
modules without the intervention of the OS. 
When dependent reactive behaviors are mapped 
to interconnected architecture modules, their 
communication can occur through the 
established hardware event channels.  
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Power management should be applied at all 
levels of the design hierarchy: System level, 
architecture module level, circuit level and 
device level [4]. By carefully incorporating local 
power management into the individual 
architectural modules, we can push power 
management down the design hierarchy. We 
propose a hybrid approach to power 
management, which combines distributed power 
controls with global monitoring. 

PicoRadio networks are sensor networks 
characterized by bursty and mostly aperiodic 
traffic. The low-duty cycle makes it essential that 
individual modules are powered down whenever 
not active. If not, leakage current will dominate 
the power budget. Rather than assuming all the 
modules in the systems are on and could be 

turned-off to conserve energy, we assume that 
they are “off” until powered-up by the arrival of 
events at their interface. Internally, modules are 
awakened either by their neighbors or by the OS. 
This novel approach assumes the concept of a 
wake-up radio, which only turns on when 
communications are truly needed [9].  

Figure 2 is the behavior diagram of the 
PicoRadio III sensor node. It shows the different 
components in the system and the interactions 
between them. Communication between 
components is purely reactive. Figure 3 shows 
Architectural diagram for PicoRadio sensor node 
System. Each module has an interface that is 
responsible for its own local power status and 
control. When an event arrives from a neighbor, 
the interface logic will decide which part of the 
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Figure 2: Behavior diagram of the PicoRadio sensor node. 
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Figure 3: Architectural diagram for PicoRadio sensor node. 



1- 7 

module should be turned-on to process the event. 
The interface could also have voltage-scaling 
capability built-in to further control the power 
consumption of the module by matching module 
performance, and hence energy expenditure, with 
workload. The sleeping mechanism can be 
implemented as some function of the module 
idle time and wake-up overhead, etc.  

On top of this distributed power control 
mechanism, global monitoring is implemented to 
incorporate global information that local 
modules are not able to “see”.  For this, the 
system level OS supports global power 
management. It maintains global state by 
monitoring the module interactions, and 
schedules periodic system maintenance 
accordingly. Based on its knowledge of the 
entire system, it issues commands to a module’s 
interface to override local decisions when there 
are conflicts of interest. For example, the 
network layer may wish to go to sleep since it 
has not received any event for a certain amount 
of time, but the OS senses some activity in the 
RF layer and might find it advantageous to 
prevent the network layer from going to sleep.  

3.2 TinyOS Limitations and proposed 
extensions 

Given our revised, broader prospective of the 
operating system, TinyOS is limited and 
inadequate. It is primarily designed for uni-
processor architectures. All components except 
for the lowest layers of the application are 
implemented in software. Low-level hardware 
components are required to have a software 
wrapper to interact with the scheduler and the 
rest of the system.  This software centric 
approach does not allow full exploration of the 
integrated, heterogeneous system architecture. 
Moreover, TinyOS assumes off the shelf 
components and in essence has no access to 
customized power-efficient blocks.   TinyOS’s 
rudimentary power management scheme also 
needs to be greatly improved. 

We have proposed the following extensions to 
TinyOS to establish the OS as the global system 
scheduler and power manager.  

1. Replace the simple FIFO task scheduler in 
TinyOS with a more sophisticated 
scheduler, which supports voltage scaling 
of the modules to which the tasks are 
assigned. This implies that each task 
should carry some real time scheduling 
information. Scheduling techniques for 

variable voltage can be applied to 
minimize power consumption while 
meeting the performance constraints [10] 
[11][12]. 

2. Components can also be implemented in 
hardware. Moreover, hardware 
components need not dispatch tasks. 
Tasks are introduced in TinyOS to 
implement threads in the algorithm on 
uni- processor architectures. While 
executing a task, the processor can be pre-
empted to handle higher priority incoming 
events. If components are implemented in 
hardware, tasks are no longer needed and 
are removed for simplicity. 

3. Tasks are dispatched to either software or 
hardware. This is to best utilize the whole 
system resources since dedicated 
architectural modules could be designed 
to support specific tasks. (In TinyOS, all 
tasks go into software.) 

4. Add event queues at the lowest layers. 
This can reduce the external event losses 
and make the system more robust. The 
current TinyOS has no queue 
implementation. 

5. Add global power control mechanisms. 
The OS should collect runtime profiles 
and statistics, perform periodic system 
maintenance operations and maintain 
system level power state.  

4. Conclusion and Future Work 
In this paper, we have presented issues 
concerning the implementation of a low power 
operating system for heterogeneous 
communication systems.  We argue that the OS 
should have a MOC that closely matches the 
application, and showed the significant 
improvement of the event-driven TinyOS over a 
popular general-purpose OS as a proof-of-
concept.  We have also discussed necessary 
extension to TinyOS for supporting 
heterogeneous architectures, and proposed a 
novel system power management framework.  
The next step is to build a simulation 
environment to fine tune the concepts, and 
eventually implement the OS on the PicoRadio 
III system. 
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