
1- 1

Low Power Operating System for Heterogeneous Wireless
Communication Systems

Suet-Fei Li, Roy Sutton and Jan Rabaey
Department of Electrical Engineering and Computer Science

University of California at Berkeley
(suetfei,rsutton,jan)@eecs.berkeley.edu

Abstract

Operating systems in embedded wireless
communication increasingly must satisfy a tight
set of constraints, such as power and real time
performance, on heterogeneous software and
hardware architectures. In this domain, it is well
understood that traditional general-purpose
operating systems are not efficient or in many
cases not sufficient. More efficient solutions are
obtained with OS’s that are developed to exploit
the reactive event-driven nature of the domain
and have built-in aggressive power management.
As proof, we present a comparison between two
OS’s that target this embedded domain: one that
is general-purpose multi-tasking and another
that is event-driven. Preliminary results indicate
that the event-driven OS achieves an 8x
improvement in performance, 2x and 30x
improvement in instruction and data memory
requirement, and a 12x reduction in power over
its general-purpose counterpart. To achieve
further efficiency, we propose extensions to the
event-driven OS paradigm to support power
management at the system behavior, system
architecture, and architecture module level. The
proposed novel hybrid approach to system power
management combines distributed power control
with global monitoring.

1. Introduction
The implementation of small, mobile, low-cost,
energy conscious devices has created unique
challenges for today’s designers. The drive for
miniaturization and inexpensive fabrication calls
for an unprecedented high level of integration
and system heterogeneity. Limiting battery
lifetimes make energy efficiency a most critical
design metric and the real time nature of
applications impose strict performance
constraints.

To meet these conflicting and unforgiving
constraints, we must rethink traditional operating
system approaches in embedded wireless
communication. General-purpose operating

systems developed for broad application are
increasingly less suitable for these types of
complex real time, power-critical domain
specific systems implemented on advanced
heterogeneous architectures. The current practice
of independently developing the OS and the
application, in particular the paradigm of blindly
treating a task as a random process, is unlikely to
yield efficient implementation [1]. What is
needed is an OS that is more intimately coupled
to, aware of, and interactive with its managed
applications. Specifically, a “lean” but capable
OS that is developed to target the nature of these
reactive event-driven embedded systems. It
should execute with minimal overhead, be agile,
and deploy aggressive power management
schemes to drive down overall system energy
expenditure.

To illustrate these concepts, we construct our
argument in two steps. To demonstrate the
benefit of a specialized OS that closely matches
the application, we will first present a detailed
comparison between two OS implementation of
the same design -- a wireless protocol stack. The
first is eCOS [2], a popular embedded general-
purpose multi-tasking OS and the second is an
event-driven OS called TinyOS [3]. Preliminary
results indicate that the event-driven OS achieves
an 8x improvement in performance, 2x and 30x
improvement in instruction and data memory
requirement, and a 12x reduction in power over
its general-purpose counterpart.

The results are certainly very positive, however,
we believe that further improvement can be
obtained from proper extension of TinyOS.
TinyOS possess certain qualities that are very
attractive for low power heterogeneous systems.
Its event-driven asynchronous characteristics can
naturally support the interactions and
communications between modules of vastly
different behavior and processing speeds in a
heterogeneous system. Its simplicity incurs
minimal overheads and it has some support for
concurrency.

1- 2

Nevertheless, TinyOS has its own limitations
and is insufficient to fulfill the ambitious role
demanded by low power heterogeneous systems.
First at all, TinyOS primitives are
microprocessor centric, while advanced system
architectures consist of heterogeneous modules
of custom logic, programmable logic, memories,
DSPs, embedded processors, and other
optimized domain specific modules.
Furthermore, TinyOS only supports rudimentary
power management scheme. The logical next
step is to extend TinyOS and establish it as the
global management framework that incorporates
the heterogeneous architecture modules in the
system, as well as devise sophisticated power
management mechanisms.

The rest of the paper is organized as following:
Section 2 presents a detailed comparison
between two OS implementations of the same
wireless protocol design; Section 3 proposes a
low power reactive operating system for
heterogeneous architectures and the associated
global and local power management strategies;
and Section 4 concludes the paper.

2. Event-driven versus general-
purpose OS
A close “match” between the application and of
the OS greatly improves opportunity to efficient
final implementation. By match we mean to have
Models of Computation (MOC) [4] that are
similar to that of the application. MOC is a
formal abstraction that defines the interaction of
the basic blocks in the system behavior. In
particular, three important properties of the
specification: sequential behavior, concurrent
behavior, and communication have to be clearly
defined.

In the following section, we will present a
comparison between a traditional general-
purpose multi-tasking OS and an event-driven
OS in terms of MOC, generality,
communication, concurrency support, and
memory and performance overhead. The
implementation of a wireless protocol design is
used as the case study for both.

2.1 PicoRadio II Protocol Design

PicoRadio [4] is an ad hoc, sensor-based wireless
network that comprises hundreds of
programmable and ultra-low power
communicating nodes. PicoRadio applications
have the following characteristics: low-data rate,
ultra-low power budget, and mostly passive

event-driven computation. Reactivity is triggered
by external events such as sensor data
acquisition, transceiver I/O, timer expiration, and
other environmental occurrences. The chosen
MOC for the PicoRadio protocol stack is
Concurrent Extended Finite State Machines
(CEFSM) [5]. CEFSM models a network of
communicating extended finite state machines
(EFSM), which are finite state machines that
effectively express both control and the
computation found in datapath operations. Each
layer in the protocol stack is modeled as an
EFSM. The communication between EFSMs is
asynchronous because the stack layers work at
differing rates: the lower layers typically run
much faster than the higher layers.

In this second version of the PicoRadio design
(PicoRadio II), the protocol stack has a simple
User Interface (UI) layer, a transport layer, a
MAC layer, and an interface to the physical
layer. Different layers in the stack have vastly
different processing granularities and speeds:
Physical layer processes at bit level and has to
respond in microseconds, while UI reacts to user
requests in seconds and even minutes. Due to
their different behavior activity and
characteristics, the UI and transport layers are to
be implemented in software on the embedded
processor while the MAC and physical layers are
implemented with the support of custom
optimizes hardware modules.

2.2 General-purpose Multi-tasking OS

The general-purpose multi-tasking OS was
originally developed for the PC platform and
later adapted for general embedded systems. It is
good for supporting several mostly independent
applications running in virtual concurrency.
Suspending and resuming amongst the processes
when appropriate provide support for multi-
tasking and/or multi-threading. Inter-task
communication involves context switching
which can become an expensive overhead with
increased switching frequency. This overhead is
tolerable for PC applications since the
communication and hence switching frequency is
typically low when compared to the computation
block granularity. Moreover, as these overheads
grow, the wasted energy expenditures are of
relatively little concern for these virtually infinite
energy systems. As general-purpose OSs do not
target low power applications, they have no
built-in energy management mechanisms and
any employed are wholly deferred to the
application with its limited system scope.

1- 3

It is apparent that the MOC of the general-
purpose OS is quite different from that of the
protocol stack. The processes across the layered
protocol stack are not independent. They are
coupled and activate and deactivated with events
from neighboring processes. In other words, the
communication frequency is high amongst
neighbors and high overheads are far less
tolerable. As we will see shortly, this MOC
“mismatch” results in major inefficiencies.

We have designed a chip to implement the
PicoRadio II protocol stack. Our main design
tool is Virtual Component Codesign (VCC) from
Cadence Design Systems [6]. The VCC flow
covers the entire design process from behavior
specification to architecture exploration, all the
way down to final hardware/software
implementation. The software implementation
process in VCC takes a traditional approach and
assumes a general purpose multi-tasking OS.
The code generation is accomplished by turning
each concurrent system component in the
specification into a task. Communication
wrapper functions are then generated to connect
the tasks and the OS. We have chosen the
popular eCOS as our embedded OS due to its
availability and efficiency.

From the chip layout, we notice that the software
portion of the architecture including the
processor and its memory blocks occupies more
than 70% of the total area. This is especially
inefficient considering that the processor is
greatly under-utilized (utilization < 7%). Reason
being that the software-implemented UI and
transport layers run at much lower activity and
rate (user request and packet level processing)
than the hardware-implemented MAC and
physical layers (bit level processing).

Careful analysis of the software code reveals that
of the total 10K byte instruction code size, about
50% is communication overhead. The massive
data memory size of 54K is a result of the
communication overhead, expensive scheduler
overhead, memory management, and stack
allocations.

2.3 Event-driven OS

TinyOS specifically targets event-driven
communication systems. Its MOC is CEFSM,
which matches that of the protocol processing
system. This match drastically reduces the
communication overhead as well as other OS
related costs. Because TinyOS is not designed to
support a broad range of general applications, it
can cut down on expensive OS services such as
dynamic memory allocation, virtual memory,
etc. In addition, unnecessary performance-
degrading polling is eliminated and context
switching is minimized and very efficiently
implemented.

In TinyOS, an application is written as a graph of
components. For the PicoRadio II example,
components would be the layers in the protocol
stack. Each component has command and event
handlers that process commands and events from
other components, tasks that provide a
mechanism for threaded description, and a static
frame that stores internal state and local
variables.

The TinyOS system operation can be briefly
described as following: external events from the
RF transceivers or sensors propagate from the
lowest layers up the component graph until
handled by the higher layers. To prevent event
loss, the system must process incoming events
faster than their arrival rate. Threaded behavioral
description is supported via tasks, which are
operations in the event or command handlers that
require a “significant” number of processor
cycles. Tasks are pre-empted by the arrival of an
incoming event and are dispatched from a task
queue. TinyOS uses a simple FIFO task
scheduler. Built-in power control is exercised by
shutting down the CPU when no tasks are
present in the system after all event processing.

We have re-implemented the PicoRadio II
protocol stack using TinyOS. In the next section,
we will present a comparison between the
general-purpose OS (eCOS) and the event-driven
OS (TinyOS) in three important performance
metrics: memory requirement, performance, and
power.

1- 4

2.4 Comparison Summary

Table 1 summarizes the contrast between the two
OS’s as presented in Section 2.2 and 2.3. Table 2
shows the memory requirement comparison
between the two OS’s. With the same processor
selection (16 bit ARM7), TinyOS needs half the
instruction memory and one-thirtieth the data
memory. Studies showed that the power
consumption of SRAM scales roughly as the
square root of the capacity [7]. This implies that
with TinyOS, instruction memory power can be
reduced by 1.6x, and data memory power by

4.2x. Using a simpler processor such as 8-bit
RISC could further reduce memory size and
power consumption.

 Figure 1 presents the performance comparison.
The left graph compares the total processor cycle
count: 16365 vs. 2554. TinyOS shows a factor of
eight improvements, which translates directly to
a factor of eight reductions in processor power
consumption. The right graph compares the OS
overhead (the lowest portion of the bars) as a
percentage of the total cycles. As an indication of
its inefficiency, the general-purpose OS has an

FrequentInfrequentCommunication Frequency

SmallLargeMemory Requirement

SmallLargeCommunication Overhead

Target event driven systemsGeneralGenerality

Communicating EFSMsMulti-taskingMOC

Event-driven OSGeneral purpose OS

FrequentInfrequentCommunication Frequency

SmallLargeMemory Requirement

SmallLargeCommunication Overhead

Target event driven systemsGeneralGenerality

Communicating EFSMsMulti-taskingMOC

Event-driven OSGeneral purpose OS

Table 1: General comparison.

709317627408 bit RISCEvent-driven

280080005312ARM7 thumbEvent-driven

549882232410,096ARM7 thumbGeneral Purpose

Data memTotal instruction mem ApplicationProcessorOS type

709317627408 bit RISCEvent-driven

280080005312ARM7 thumbEvent-driven

549882232410,096ARM7 thumbGeneral Purpose

Data memTotal instruction mem ApplicationProcessorOS type

Table 2: Memory requirements comparison.

Total cycle count at 1MHz

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Gen. OS TinyOS

T
ot

al
 C

yc
le

 C
ou

nt

Figure 1: General-purpose versus event-driven OS. Key at right identifies system components.

86.9

Percentage breakdown at 1MHz

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gen. OS TinyOS

transport_remote

transport_bs

merge2
merger1

data converter
UI

OS

10.1

85.9

1- 5

OS overhead of 86% while TinyOS has 10%.

Now let us calculate how much power is actually
saved considering both the processor and its
memory blocks. With a 0.18µm technology and
a supply voltage of 1.8V, an ARM7 consumes
0.25mW/MHz. For a memory size of 64KB, read
per access consumes 0.407mW/MHz and write
consumes 0.447mW/MHz. Assume that 10% of
the instructions involve memory read operations
and 10% memory writes and apply memory size
as well as processor cycle count scaling, the
power consumption for the two OSs are:
0.608mW/MHz and 0.053Mw/MHz. That is,
TinyOS demonstrates a factor of 12
improvements in power.

One may argue that eCOS is an overkill and
could be optimized to yield better performance
and power. ECOS is a reconfigurable OS, and
the authors choose the configuration options that
yield the smallest and simplest implementation.
While further optimization could be applied,
with a factor of 12 win in power, TinyOS should
remain far superior.

3. Low Power Reactive OS for
Heterogeneous Architectures
Our driving research goal is to design an energy
efficient OS for domain specific heterogeneous
architectures. We believe that some basic
TinyOS concepts are very attractive and can be
adopted to reach such a goal. TinyOS’s event-
driven asynchronous characteristics can naturally
support the interactions and communications
between modules of vastly different behavior
and processing speeds in a heterogeneous
system. Its simplicity reduces overheads and
leads to more power efficient implementation. It
also provides some support for multiple flows of
control that are typical of wireless sensor
applications.

However, TinyOS has its limitations and is
insufficient for our research goal. It has to be
properly extended to the system level to include
management of not only computation on the
embedded processor, but also computation on
the optimized architecture modules. In the
following sections, we will elaborate on the roles
of the “system level OS” in the context of

PicoRadio III, a next generation heterogeneous
wireless communication system and discuss the
necessary TinyOS extensions.

3.1 Event-driven Global Scheduler and
Power Management

In a complex heterogeneous system, the OS acts
like a hardware abstraction layer [8] that
manages a variety of system resources. For a
power critical application, simplicity should be
the primary design philosophy. The OS should
perform a dedicated set of indispensable duties
and only these duties. There are two basic OS
duties: concurrency management at both
application and architecture levels and global
power management.

Wireless sensor applications typically have
multiple flows of control and data. A sensor
node can sense the environment, forwards
packets and receive commands all at the same
time. The OS needs to support concurrency in
the application as well as explore and utilize the
concurrency in the heterogeneous architecture.
Since the OS has the global “view” of the
system, it can also perform global power
management to optimize the system power
consumption. Essentially, the OS is a global
scheduler with power management.

In our vision of the system architecture, the OS
is refocused from the microprocessor and
becomes a separate unit that can be implemented
in software, hardware, reconfigurable logic, or
some combination. Traditional software centric
control approaches have a central control unit
that schedules communication between the
system modules. We believe that a more
efficient approach is to distribute control over the
entire system. Global monitoring is added to
further improve the system performance via
feedback derived from observations with greater
system scope. In this control framework,
communication can occur between certain
modules without the intervention of the OS.
When dependent reactive behaviors are mapped
to interconnected architecture modules, their
communication can occur through the
established hardware event channels.

1- 6

Power management should be applied at all
levels of the design hierarchy: System level,
architecture module level, circuit level and
device level [4]. By carefully incorporating local
power management into the individual
architectural modules, we can push power
management down the design hierarchy. We
propose a hybrid approach to power
management, which combines distributed power
controls with global monitoring.

PicoRadio networks are sensor networks
characterized by bursty and mostly aperiodic
traffic. The low-duty cycle makes it essential that
individual modules are powered down whenever
not active. If not, leakage current will dominate
the power budget. Rather than assuming all the
modules in the systems are on and could be

turned-off to conserve energy, we assume that
they are “off” until powered-up by the arrival of
events at their interface. Internally, modules are
awakened either by their neighbors or by the OS.
This novel approach assumes the concept of a
wake-up radio, which only turns on when
communications are truly needed [9].

Figure 2 is the behavior diagram of the
PicoRadio III sensor node. It shows the different
components in the system and the interactions
between them. Communication between
components is purely reactive. Figure 3 shows
Architectural diagram for PicoRadio sensor node
System. Each module has an interface that is
responsible for its own local power status and
control. When an event arrives from a neighbor,
the interface logic will decide which part of the

MAC

App/UI

Network

Transport

Physical

RF

Sensors

Positioning

Forwarding

Reactive
system OS

Actuators

EEvveenntt SSoouurrcceess

Figure 2: Behavior diagram of the PicoRadio sensor node.

Arch.
Module 1

Interface

Global Interconnect

…
…

Arch.
Module 2

Interface

Arch.
Module 3

Interface

Arch.
Module 4

Interface

Reactive System OS

Arch.
Module 1

Arch.
Module 1

Interface

Global Interconnect

…
…

Arch.
Module 2

Arch.
Module 2

Interface

Arch.
Module 3

Arch.
Module 3

Interface

Arch.
Module 4

Arch.
Module 4

Interface

Reactive System OS

Figure 3: Architectural diagram for PicoRadio sensor node.

1- 7

module should be turned-on to process the event.
The interface could also have voltage-scaling
capability built-in to further control the power
consumption of the module by matching module
performance, and hence energy expenditure, with
workload. The sleeping mechanism can be
implemented as some function of the module
idle time and wake-up overhead, etc.

On top of this distributed power control
mechanism, global monitoring is implemented to
incorporate global information that local
modules are not able to “see”. For this, the
system level OS supports global power
management. It maintains global state by
monitoring the module interactions, and
schedules periodic system maintenance
accordingly. Based on its knowledge of the
entire system, it issues commands to a module’s
interface to override local decisions when there
are conflicts of interest. For example, the
network layer may wish to go to sleep since it
has not received any event for a certain amount
of time, but the OS senses some activity in the
RF layer and might find it advantageous to
prevent the network layer from going to sleep.

3.2 TinyOS Limitations and proposed
extensions

Given our revised, broader prospective of the
operating system, TinyOS is limited and
inadequate. It is primarily designed for uni-
processor architectures. All components except
for the lowest layers of the application are
implemented in software. Low-level hardware
components are required to have a software
wrapper to interact with the scheduler and the
rest of the system. This software centric
approach does not allow full exploration of the
integrated, heterogeneous system architecture.
Moreover, TinyOS assumes off the shelf
components and in essence has no access to
customized power-efficient blocks. TinyOS’s
rudimentary power management scheme also
needs to be greatly improved.

We have proposed the following extensions to
TinyOS to establish the OS as the global system
scheduler and power manager.

1. Replace the simple FIFO task scheduler in
TinyOS with a more sophisticated
scheduler, which supports voltage scaling
of the modules to which the tasks are
assigned. This implies that each task
should carry some real time scheduling
information. Scheduling techniques for

variable voltage can be applied to
minimize power consumption while
meeting the performance constraints [10]
[11][12].

2. Components can also be implemented in
hardware. Moreover, hardware
components need not dispatch tasks.
Tasks are introduced in TinyOS to
implement threads in the algorithm on
uni- processor architectures. While
executing a task, the processor can be pre-
empted to handle higher priority incoming
events. If components are implemented in
hardware, tasks are no longer needed and
are removed for simplicity.

3. Tasks are dispatched to either software or
hardware. This is to best utilize the whole
system resources since dedicated
architectural modules could be designed
to support specific tasks. (In TinyOS, all
tasks go into software.)

4. Add event queues at the lowest layers.
This can reduce the external event losses
and make the system more robust. The
current TinyOS has no queue
implementation.

5. Add global power control mechanisms.
The OS should collect runtime profiles
and statistics, perform periodic system
maintenance operations and maintain
system level power state.

4. Conclusion and Future Work
In this paper, we have presented issues
concerning the implementation of a low power
operating system for heterogeneous
communication systems. We argue that the OS
should have a MOC that closely matches the
application, and showed the significant
improvement of the event-driven TinyOS over a
popular general-purpose OS as a proof-of-
concept. We have also discussed necessary
extension to TinyOS for supporting
heterogeneous architectures, and proposed a
novel system power management framework.
The next step is to build a simulation
environment to fine tune the concepts, and
eventually implement the OS on the PicoRadio
III system.

5. Reference
[1] K.Ramamritham and J.A. Stankovic,

“Scheduling Algorithms and Operating
Systems Support for Real-Time Systems”,

1- 8

Proceedings of the IEEE, January 1994, pp.
55-67.

[2] http://sources.redhat.com/ecos
[3] David Culler et al, The TinyOS group,

Department of EECS, UC Berkeley.
[4] J. Rabaey et al., “PicoRadio Supports Ad

Hoc Ultra-Low Power Wireless
Networking”, IEEE Computer, Vol. 33, No.
7, July 2000, pp. 42-48.

[5] E. Lee and A. Sangiovanni-Vincentelli, “A
Unified Framework for Comparing Models
of Computation”, IEEE Trans. on Computer
Aided Design of Integrated Circuits and
Systems, Vol. 17, N. 12, pp. 1217-1229,
December 1998.

[6] http://www.cadence.com
[7] R. Evans & P. Franzon, “Energy

Consumption Modeling and Optimization
for SRAM’s”, Journal of Solid-State
Circuits, Vol. 30, No. 5, May 1995.

[8] A. Ferrari and A. Sangiovanni-Vincentelli,
“System Design: Traditional Concepts and
New Paradigms”, Proceedings of the Int.
Conf. on Computer Design, Austin, Oct.
1999.

[9] B. Otis, I. Telliez and I. Cambonie,
“PicoRadio RF”,
http://bwrc.eecs.berkeley.edu/Local/Researc
h/PicoRadio/PHY, January 2001.

[10] Y Lin, C. Hwang & A. Wu, “Scheduling
Techniques for Variable Voltage Low
Power Designs”, ACM Transaction on
Design Automation of Electronic Systems,
Vol. 2, No. 2, April 1997, pp 81-97.

[11] J. Monteiro, S. Devadas, P. Ashar, A.
Mauskar, “ Scheduling techniques to enable
power management”, 33rd Design
Automation Conference, June 1996.

[12] J. Brown, D. Chen, G.W. Greenwood,
Xiaobo Hu; R. Taylor, “Scheduling for
power reduction in a real-time system”,
Proceedings 1997 International Symposium
on Low Power Electronics and Design.

